Word processing $E^{T}E^{X}$ Table of contents

1 Word processing in the past and today3
2 Bitmaps and vector graphics6
3 Overview MS Word9
4 Overview LaTeX10
5 Structuring a LaTeX document13
6 The syntactical outline of the document15
7 Chapters, sections, subsections18
8 Lists (bullet and numbered)19
9 Other useful commands
10 References
11 Typesetting equations24
– Typeset by Foil'TEX – $$1$$

12 Equations in LaTeX	25
13 Figures	27
14 Other random bits (special characters etc)	34
15 Further reading	35

– Typeset by Foil $\mathrm{T}_{\mathrm{E}}\mathrm{X}$ –

2

1 Word processing and typesetting (Outline)

- authoring and typesetting
- vector graphics versus bitmaps
- LaTeX (= $\[ET_EX = latex \]$)
 - ▷ compiling documents
 - \triangleright structure
 - \triangleright lists
 - ▷ references
 - \triangleright equations
 - ▷ figures
 - \triangleright floats
 - ▷ other information
 - $\,\triangleright\,$ pointers to more information.

We use this symbol \rightarrow Section X in LaTeX Tutorial to point to section X in "The not so short introduction to LaTeX" which can be found on the course web site (pdf).

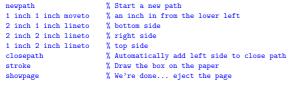
Creating documents

In an ideal world:

 \rightarrow Section 1.3 in LaTeX Tutorial

- The author
 - ▷ writes the manuscript
 - ▷ divides it into chapters, sections, subsections
 - \triangleright indicates in manuscript where a new section starts
 - \rightarrow concentrates on content and structure of document
- The typesetter
 - ▷ typesets the document, *i.e.* reads manuscript and layouts the text to emphasise sections, subsections,...
 - $\triangleright\,$ assigns numbers to sections
 - \rightarrow concentrates on (consistent) layout of document

Type setting


- Past: separation of
 - ▷ writing manuscript and
 - \triangleright typesetting it
- Present:
 - ▷ journals, books: separate typesetting
 - ▷ "small" documents: author and typesetter is the same person
- Future:
 - ⊳ ?
- Software today mainly
 - ▷ MicroSoft Word
 - ▷ LATEX (latex, LaTeX)
 - Corel WordPerfect
 - \triangleright Open Source:
 - Open Office
 - Abiword (http://www.abisource.com/)
 - . . .

– Typeset by Foil T_{EX} –

PostScript (ps)*

- "page description language"
- introduced in 1985
- describe pages in a device independent fashion (similar to vector graphics)
- Example: (psbox.ps)

%% Draws a one square inch box and inch in from the bottom left /inch 72 mul def % Convert inches->points (1/72 inch)

produces:

 Postscript viewers ("ghostscript" and "ghostview") are freely available (http://www.cs.wisc.edu/~ghost/)

5

Bitmaps and vector-graphics

Different ways of storing/transmitting graphics (including text)

- Bitmaps
 - matrix of small points, for example 360 dots per inch (dpi) in each direction
 - $\,\triangleright\,$ store points individually
 - ▷ ideal for photographic images
 - \triangleright formats: bmp, tif, gif, jpg, png, . . .
 - ▷ zooming reveals individual pixels:
 - This is a test.
- Vector graphics
 - ▷ store positions and shapes of graphical elements with mathematical formulae,
 - \triangleright for example store a straight line as a vector from starting point to end point
 - $\triangleright\,$ ideal for text and schematic diagrams
 - \triangleright formats: pdf (\approx compressed PostScript), ps, svg, cad-program data, . . .
 - $\triangleright\,$ zooming does not affect quality:

is is a test.

– Typeset by Foil $T_{E}X$ –

- PostScript is the dominant print-job description language on UNIX/Linux + Mac
- Better printers understand PostScript (for example most HP LaserJets)
- Can use software (ghostscript) to print PostScript files on other printers (on Windows, on UNIX/Linux and Mac, this is all working automatically)
- PostScript is used in book and journal printing industry
- pdf is a compressed PostScript (in 1st approximation) and therefore
- can easily convert PostScript to pdf (these pdf-lecture notes are converted from a PostScript file)

Microsoft Word (MS Word)

- commercial product (Office Standard Editition 2003 (Excel, Outlook, Word, Powerpoint) costs £369.99 (checked on 15/11/2006))
- meant to be "WYSIWYG" (What You See Is What You Get)
- writing and typesetting combined
- advantages
 - ▷ text and final layout immediately visible
 - \triangleright widely used and available
- disadvantages
 - ▷ difficulty handling large files
 - ▷ layout changes depending on printer driver (*i.e.* no machine-independent format).
 - ▷ formulae not well laid out, difficult to enter
 - ▷ sometimes unstable (crashes)
 - $\triangleright\,$ need MS Word to open documents from others

```
– Typeset by Foil\mathrm{T}_{E\!\mathrm{X}} –
```

LaTeX

- free product (can download from www.latex-project.org
- program that compiles "text-source" into graphical document
- commonly used for books, journals, etc
- writing and typesetting are separated
- advantages
 - ▷ layout is printer-independent (device-independent)
 - ▷ final output is PostScript (or pdf) file: don't need LATEX to read/print it
 - ▷ formulae are easy to enter and look good
 - $\triangleright\,$ very stable: no problems with huge documents
- disadvantages
 - Not "WYSIWYG": text and layout not immediately visible
 - $\triangleright\,$ Cannot use mouse to drag figures into place
- Good for
 - ▷ long documents
 - $\,\triangleright\,$ documents with formulae, software documentation
 - $\triangleright\,$ any scientific, mathematical, technical documents

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

10

So what is this LATEX?

- Pronounciation of $\mbox{\sc ETEX}$ is Ley-tech with ch as in scottish "Loch" because last letter is χ (chi). Usually (in the UK) "Latec".
- Our first LaTeX document with name example1.tex:

- How to get from example1.tex to output:
 - ▷ Create a dvi-file:
 - latex example1.tex

or on Windows machines: $\verb+latex.exe example1.tex$ (or click on icon)

- b This creates example.dvi (dvi stands for DeVice Independent) which can be
 - displayed on the computer screen (using a special dvi-viewer).
- $\triangleright~$ Then convert the dvi-file to PostScript file and
 - print it or
 - display it.

Can also create pdf files straight away. See instructions for latex laboratory session.


dvi, ps and pdf*

Why are there 3 device independent page description languages?

- dvi: Invented as the device independent format for $T_{\mbox{EX}}(the $predecessor of \mbox{\sc BTE}X)$ in the early 1980s$
- ps: Invented after dvi. Everything dvi-files can, PostScript can do, too.
- pdf: Even more recent, basically a compressed PostScriptformat (plus new features). Everything PostScript can do, pdf files can do, too.

q

Structuring a LATEX document: output

The syntactical outline of the document

 \rightarrow Section 1.6 in LaTeX Tutorial

• Each $\ensuremath{\mathbb E} {\rm X} 2\epsilon$ file (this is the current version) should start with

\documentclass[OPTIONS]{CLASS}

- useful OPTIONS are
 - \triangleright a4paper use A4 rather than U.S. letter
 - \triangleright 10pt set default font size to 10 points
 - \triangleright 11pt set default font size to 11 points
 - ▷ 12pt set default font size to 12 points
 - ▷ twocolumn layout text with 2 columns

Separate $\ensuremath{\texttt{OPTIONS}}$ with a comma, for example:

\documentclass[a4paper,12pt]{article}

- useful CLASSes are
 - $\,\triangleright\,$ article, with sections, subsections, subsubsections
 - \triangleright report as article plus chapters
 - ▷ **book** as report plus parts

There are a few more differences between books, reports and articles (for example books are double-sided).

 The beginning of the document has to be indicated by \begin{document}

Structuring a LATEX document: input

• Any commands between \documentclass[...]{article} and \begin{document} are said to be in the *preamble* of the document.

The preamble can be used to define

 $\triangleright\,$ textheight and width on page

- $\triangleright\,$ header and footer lines
- $\triangleright\,$ style of page numbering
- ▷ . . .
- The main text is located between \begin{document}and \end{document} and is referred to as the body of the document. Further commands (starting with a backslash) can be used in the body to detail formatting instructions.
- Each document has to end with

\end{document}

- A minimal $\ensuremath{{\mbox{\sc black}{\mbox{\sc black}}}\xspace}$ A minimal $\ensuremath{{\mbox{\sc black}{\sc black}}\xspace$ document looks like this:

\documentclass[a4paper]{article}
\begin{document}
\end{document}

This will just produce a blank A4 page.

Chapters, sections, subsections, . . .

 \rightarrow Section 2.7 in LaTeX Tutorial

• \section{TITLE} starts a new section with title TITLE.

LATEX automatically changes the font size accordingly, and inserts a section number. Headings without numbers are created with \section*{TITLE}

- \subsection{TITLE} and \subsubsection{TITLE} start new subsections and subsubsections, respectively.
- In books and reports, the command \chapter{TITLE} starts a new chapter with title TITLE.
- Paragraphs are defined by empty lines in the source file.
- A new line can be enforced using \\ at the point where the line-break should occur.
- Everything after a % character is a comment (and ignored by LaTEX). We can use this to document the LaTEX code, and to place comments into the document which we do not want to be seen by the reader.

- Typeset by FoilTFX -

17

→ Section 2.11.1 in LaTeX Tutorial

– Typeset by FoilT_EX –

18

Lists

- Itemized lists
 - read the title
 - read the abstract
 - read the introduction andread the summary (or conclusions).

can be created using

\begin{itemize}
\item read the title
\item read the abstract
\item read the introduction and
\item read the summary (or conclusions).
\end{itemize}

- Enumerated lists such as
 - 1. Understand how LaTeX works
 - Write your own documents
 Do something else
 - 3. Do something else

are created using:

- \begin{enumerate}
 \item Understand how LaTeX works
 \item Write your own documents
 \item Do something else
 \end{enumerate}
- There is no limit with respect to the number of items that a list can take.
- Lists can be nested.

Other useful commands → Section 6.2 in LaTeX Tutorial

• \centerline{TEXT}

prints TEXT centered. If TEXT is longer than one line, then one should use the center-environment:

\begin{center}
LONG TEXT
\end{center}

• \textbf{TEXT} \textit{TEXT}

prints TEXT in bold face and italics, respectively

test	$textrm{test}$	RoMan (normal)
test	test	BoldFace
test	\textit{test}	ITalic
test	$texttt{test}$	TypewriTer
test	$\ensuremath{\texttt{test}}$	EMPHasize

• \emph{TEXT}

can be used to *emphasise* TEXT. This usually (but not necessarily) means to print it in italics. This is the recommended way to emphasise words.

• \huge \LARGE ...

test	\huge
test	\LARGE
test	\Large
test	\large
test	\normalsize
test	\small
test	\footnotesize
test	\tiny

change the font-size

Either enclose the font-size changing command in curly braces to limit its effect:

This is normal text. {\huge This sentence is huge.} Back to normal.

This is the better method (because you go back to whatever font size was used before you switched to "huge").

- Or switch back to normal size at a later point: This is normal text. \huge This sentence is huge. \normalsize Back to normal.
- \footnote{TEXT}

creates a footnote containing TEXT.

• \LaTeX

inserts the $\mbox{\sc bt} T_EX$ logo into the document. If you want a space after " $\mbox{\sc bt} T_EX$ ", you should use

 $LaTeX{}$

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

21

Other references

- References to sections, subsections, subsubsections, and chapters are done exactly as for sections, *i.e.* use a label and then refer to it.
- References to figures and tables use the same system. Note that the label for figures and tables should be in the caption (see slide 29).
- References to equations use the same system. Note that the label for equations should be placed in the equation environment.
- References to page numbers use \pageref{LABELNAME} to insert the page number on which the label LABELNAME is defined.

References to sections

→ Section 2.8 in LaTeX Tutorial

At the time of writing we don't know which section number will be assigned to which section (because LaTeX does this at compile time). Therefore, we should never insert numbers of sections into the document when referring to other sections. Instead we use labels.

• Here is a bad example (schematic):

```
\section{Results}
Usually, reports have a results chapter, ...
\section{Discussion}
If not done in section 3 already, the results ...
```

• Here is a good example (schematic):

```
\section{Results}\label{sec:results}
Usually, reports have a results chapter, ...
\section{Discussion}
If not done in section \ref{sec:results} already, the results ...
```

- The command \label{LABELNAME} defines a label with name LABELNAME
- The command \ref{LABELNAME} refers to the label LABELNAME. When LaTeX compiles this document, it will insert the correct section number for \ref{LABELNAME}, in this case "3".

– Typeset by Foil $T_{E}X$ –

22

Typesetting equations (general guidelines) → Section 3 in LaTeX Tutorial

General guidelines for typesetting equations

• variables should appear in italics, *i.e.*

$$x = y + 10$$

not

$$\mathbf{x} = \mathbf{y} + 10$$

• names that clarify the role of a variable should be upright, *i.e.*

 $x_{\rm max} = 100$

 $x_{max} = 100$

not

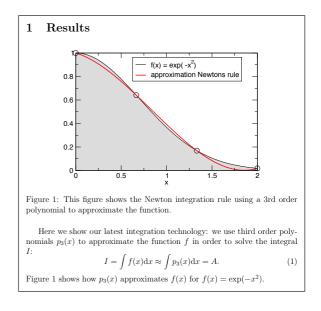
because max looks like m multiplied by a multiplied by x.

- Similarly, use $f(x) = \sin(x)$, not $f(x) = \sin(x)$.
- Be aware that not all scientists and engineers stick to these conventions.

 \rightarrow Section 3.1-3.10 in LaTeX Tutorial

Equations in PTEX Section 3.1 in LaTeX Tutoria
We distinguish
 "in-line equations" such as Our computations show that √4 = 2. ▷ switch on and off using \$ ▷ Example: Our computations show that \$\sqrt{4}=2\$.
 "displayed equations" without numbering
Our computations show that $\sqrt{4} = 2.$
 ▷ switch on and off using \$\$ ▷ Example: Our computations show that \$\$\sqrt{4}=2.\$ "displayed numbered equations"
<pre>√4 = 2. (1) ▷ switch on and off using \begin{equation} and \end{equation} ▷ Example: Our computations show that</pre>
<pre>\begin{equation} \sqrt{4}=2. \end{equation}</pre>
– Typeset by Foil T_EX – 2

output	latex	comment
z = x + y	z = x + y	
$a_0 = 0^0 = 1$	a_0 = 0^0 = 1	subscript (_) and superscript (^)
$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	
$c = \sqrt{a^2 + b^2}$	$c = \sqrt{a^2+b^2}$	curly braces group
$\gamma = \pm \sqrt{\Gamma}$	\gamma = \pm\sqrt{\Gamma}	$\mathrm{pm}=\mathrm{PlusMinus}$
y = f(x)	y = f(x)	
$1/2 = \frac{1}{2}$	$1/2 = \int \{1\}{2}$	fraction
$x_1 = 0, x_2 = 1$	$x_1 = 0$, $x_2 = 1$	quad inserts space
p_{max}	p_{max}	bad: looks like m times a times x
p_{\max}	p_\mathrm{max}	good: "max" is name
$f(x) = \sin(x)$	$f(x) = \langle sin(x) \rangle$	
$g(t) = \frac{1}{2}\cos(\omega t)$	$g(t) = \frac{1}{2} \cos(\theta t)$)
$x = \frac{a+b}{a-b}$	$x = \frac{a+b}{a-b}$	
$\int \sin(x) dx = \cos(x)$	int sin(x) d x = cos(x)	not ideal: d looks like variable
$\int \sin(x) \mathrm{d}x = \cos(x)$	<pre>\int \sin(x) \mathrm{d} x = \cos(x)</pre>	better: d looks like operator
$\int_0^{2\pi} \sin(x) \mathrm{d}x = 0$	\int_0^{2\pi} \sin(x) d]	x = 0
$\int_{0}^{2\pi} \sin(x) \mathrm{d}x = 0$	\int\limits_0^{2\pi}\sin(x) \mat	$thrm{d} x = 0$
$A_{\Delta} = h \sum_{i=0}^{n} f(x_i)$	A_\Delta = h \sum_{i=0}^n :	f(x_i)


– Typeset by Foil $\mathrm{T}_{\mathrm{E}}\mathrm{X}$ –

26

→ Section 4.1 in LaTeX Tutorial Including figures

- LATEX can include figures in "encapsulated PostScript" (eps) format
 - b eps is very similar to PostScript (eps-files have bounding box and don't fill complete page)
 - can convert any bitmap (such as png) into eps (using for example CorelDraw)
 - create eps files straight away (using pylab). This is the preferred way because it generates genuine vector graphics that scale as required.
- (pdflatex can also include pdf and png files. See latex laboratory session.)

Example

Example latex source

Here is the $\[Mathebaarefted{ATEX}\]$ source for the document from slide 28

\documentclass[12pt,a4paper]{article}
\usepackage{graphicx} %need this to include pictures
\begin{document}

\section{Results}

\begin{equation}

 $f(x) = \exp(-x^2)$.

- Typeset by FoilTFX -

\end{equation}

I = $\inf f(x) \operatorname{Adtrm}_d x \operatorname{p_3}(x) \operatorname{Adtrm}_d x = A.$

Figure $ref{fig:Newton}$ shows how $p_3(x)$ approximates f(x) for

Including figures

- Use an extension to standard $\ensuremath{{\ensuremath{\text{PTEX}}}}\xspace$ by adding

\usepackage{graphicx}

to the preamble.

• An eps-file can be included using

\includegraphics[OPTIONS]{FILENAME}

Useful OPTIONS are

- \triangleright width=10cm to scale the plot to be 10 cm wide.
- \triangleright height=6cm to scale the plot to be 6 cm high.
- ▷ clip sometimes necessary if eps-file overlays text

Example:

\includegraphics[clip,width=10cm]{fig.eps}

– Typeset by Foil $\mathrm{T}_{\!E\!X}$ –

30

• "clever" choice of width: use \textwidth to extract the current text width. To make the figure fill the complete width, use

\includegraphics[clip,width=1\textwidth]{fig.eps}

To make it half as wide as the text width, use

\includegraphics[clip,width=0.5\textwidth]{fig.eps}

- Placement of figure
 - ▷ the \includegraphics command inserts the eps at the place where it is written.
 - Better: allow ATEX to place the plot by using "floats".
 We do this by surrounding the includegraphics command with a figure-environment (as already used on slide 29). The next slides explain this in more detail.

Float placement

 \rightarrow Section 2.12 in LaTeX Tutorial

- Figures (and tables) should
 - be placed as close as to where they are mentioned first in the text
 - ▷ have a caption explaining what is shown

▷ have a unique number

\begin{figure}[tbph]	Begin figure environment
	See slide for <mark>33</mark> [tbph]
	Center plot of eps-file
\includegraphics[clip,	width=10cm]{fig.eps}
	This reads the file fig.eps
<pre>}% end centerline</pre>	Close centerline brace
This figure	Add the caption
the function.	still caption
\label{fig:Newton}	Add LABEL into caption
}% end caption	End caption
\end{figure}	End figure environment

29

- \triangleright the letters t,b,p and h in \begin{figure}[tbph] determine where we allow $\ensuremath{\texttt{ATEX}}$ to place the float.
 - Top(t): allow figure at top of page
 - Bottom(b): allow figure at bottom of page
 - Here(h): allow figure to be place where the figureenvironment is in the text
 - Page(p): allow figure to be place on a separate page (which contains only figures)

The letters t, b, h and p can be combined as preferred.

- LATEX will try to choose the best position for the figure
- This usually works well for large documents
- Fine-tuning of figure placements is possible (explained for example in book by Kopka and Daly, see slide 35)

Other random bits

• Special symbols:

\rightarrow Section 3.10 in LaTeX Tutorial

34

\approx	\approx	need math-mode
∞	\infty	need math-mode
\in	\in	need math-mode
\vec{x}	$vec{x}$	need math-mode
x	$mathbf{x}$	need math-mode
\hat{x}	$hat{x}$	need math-mode
\dot{x}	$dot{x}$	need math-mode
\ddot{x}	$ddot{x}$	need math-mode
\rightarrow	\to	need math-mode
\Rightarrow	\Rightarrow	need math-mode
\longrightarrow	\longrightarrow	need math-mode
\Longrightarrow	\Longrightarrow	need math-mode
	\ldota	

- ... \ldots
- $\pounds {\texttt{pounds}}$
- functions
 - ▷ \today inserts today's date
 - > \vspace{1cm} inserts 1 cm vertical space
 - > \vspace{-2cm} inserts -2 cm vertical space, i.e. moves up

– Typeset by FoilT $_{\rm E}{\rm X}$ –

33

– Typeset by FoilTFX –

Further reading

• Book: "A Guide to LATEX" by Kopka and Daly. Around $\pounds 30$. Best book available, covers everything the average user needs.

 LaTeX Tutorial: "The not so short introduction to LaTeX" (pdf) is on the course-webpage http://www.soton.ac.uk/~sesg1009 under "online documents".

- There is more information on the web. Note:
 - \triangleright The current version of latex is 2ϵ , often written as $\mbox{\sc BT}_{\mbox{\sc E}}X\,2_{\mbox{\sc c}}$ or LaTeX2e.
 - \triangleright The older version is PTEX 2.09.

Make sure that you use literature referring to $\[mathbb{MTFX}\] 2_{\mathcal{E}}$.