
Vortex Dynamics SIMulation

Hans Fangohr
University of Southampton

United Kingdom
hans.fangohr@physics.org

August 25, 2007

$Header: /Users/svn/cvs/VD/V1/docu/usage.tex,v 1.19 2006/10/09 03:51:38 fangohr Exp $ $Name: $

1

CONTENTS 2

Contents

1 Introduction 3
1.1 What is this document about? . 3
1.2 Who could be interested in this? . 3
1.3 So what can this software do? . 3
1.4 What is the future of this project? . 4
1.5 What is the structure of this document? . 4

2 Quick tour 4

3 Preparing a run 5
3.1 The configuration file . 5
3.2 The parameter file . 5
3.3 The creation of the parameter file (vdsimpp) . 5
3.4 Output from vdsimpp . 6

4 Running the simulation 8
4.1 Watch progress of simulation while computing . 8

4.1.1 Display in real computation time . 8
4.1.2 Analyse data while computing . 8

5 Post-processing of data 9
5.1 How much data is stored? . 9
5.2 Processing a range of time steps . 9

5.2.1 Select range . 9
5.2.2 Skip every nth time step . 10
5.2.3 Looking at individual time steps . 10

5.3 Extract observables . 10
5.3.1 Overview . 10

5.4 Histogram of positions . 10
5.5 Vortex configuration at one time step . 11

5.5.1 Delaunay triangulation . 11
5.5.2 Topological defects . 13
5.5.3 Vortex positions . 13

5.6 Track down one vortex . 15
5.7 Time-dependant observables . 15

5.7.1 Centre of mass . 15
5.7.2 Topological defects . 16
5.7.3 Local hexatic order . 17

5.8 The other vdpp: vdpp2 . 17
5.9 Histogram of vortex velocities . 17
5.10 What else . 18

6 Case-study: current-voltage curve 19
6.1 Introduction . 19
6.2 Configuration file . 19
6.3 Creation of pinning potential . 19
6.4 Anneal vortices into pinning surface . 20
6.5 Apply increasing driving force . 20
6.6 End of simulation . 21

1 INTRODUCTION 3

7 Advanced creation of pinning surfaces 22
7.1 How is pinning data stored for vdsim . 22
7.2 The vdconvert tool . 22

7.2.1 Converting pinning potential files formats 22
7.2.2 How to export/import pinning data to other (not supported) application-

s/tools? . 22
7.3 Superimposing different pinning structures . 23

8 Loose collection of remarks 24
8.1 Continue run or restart from scratch . 24
8.2 Simulation methods . 25
8.3 Dimensionality . 25
8.4 Simulation units . 25
8.5 Verbosity . 25
8.6 Man pages . 26

References 26

A Configuration file 27

B Parameter file 30

C Mini introduction to xmgrace 32

D Man pages 33
D.1 Overview . 33
D.2 vdsimpp . 35
D.3 vd.par . 37
D.4 vdpp . 40
D.5 vdpp2 . 45

E To do 46

1 Introduction

1.1 What is this document about?

This text provides an introduction into the Vortex Dynamics simulation software which is de-
veloped mainly by Hans Fangohr at the University of Southampton.

1.2 Who could be interested in this?

If you want to model the vortex state numerically, then this software could be able to do the
job, and save you lots of time implementing it yourself.

1.3 So what can this software do?

At the moment, the software fully supports overdamped Langevin Dynamics in two-dimensions
with a variety of vortex-vortex interaction potentials, complete freedom to choose a (spatially
homogenous) time-dependant Lorentz fore and any desired pinning potential, with periodic and
open boundary conditions.

By the time this is written, the simulation is capable to do much more, including Monte-
Carlo simulations, 3d-vortex state simulations (using a substrate model, or using several coupled

2 QUICK TOUR 4

layers), the use of a new “passive” pinning, and Hybrid-Monte-Carlo runs. However, those are
partly not fully tested, and not documented (yet). Therefore, for the time being users are
advised to stick to the 2d-Langevin case, which provides sufficiently rich physics to be able to
spend years investigating it.

There are a number of publications using this software (for example [1, 2, 3, 5, 4, 6]).

1.4 What is the future of this project?

It is hoped that Hans will be able to continue working on the software, to

• finish documentation of existing features

• finish implementation and testing of partly implemented/tested features

• implement new features as required by him, or other users.

If you want to get involved1 in this, then contact hans.fangohr@physics.org. Similarly, if
you spot anything which looks like a bug, or you don’t understand this document, or the man-
pages, or the program’s behaviour, then please get in contact. Finally, if you want to suggest
an extension, then this is welcome as well.

1.5 What is the structure of this document?

Section 2 provides a very brief overview of how to run simulations. The subsequent sections
3 to 8 detail how to prepare, run, and analyse a simulation. It is recommended to read this
section to get a feel for the possibilities the software provides. Eventually, section 8 contains a
collection of remarks which might be worth knowing at some point. (It is hoped that they will
be presented in a more structered way one day).

Now go ahead, and have fun!

2 Quick tour

Here is the ultra-condensed description of a typical computation:

• Edit configuration file (for example runID=sample, so the file is sample.cnf) to describe
the (experimental) situation one wants to simulate

• Create parameter file sample.par by exectuting “vdsimpp sample”

• Run the simulation by executing “vdsim sample”

• postprocess output with the help of vdpp and vdpp2

• and use xmgrace, vdconvert and openDX (or other standard packages of your choice) to
study (the post-processed) output.

The next sections will give more details on each of those points.
1The software is written in C++, and compiles on Linux systems (and possibly on Unix as well).

3 PREPARING A RUN 5

configuration file (.cnf) parameter file (.par)
edited by user created by vdsimpp
contains meta data contains final parameters as will be used by

vdsim
Example:
contains magnetic field, intended number
of vortices, shape of simulation cell (aspect
ratio)

Example:
contains the actual number of vortices used,
and the size (in x- and y-direction) of the
simulation cell

Table 1: Comparison of configuration and parameter file.

3 Preparing a run

3.1 The configuration file

Each run has one configuration file (.cnf) which inucludes all parameters of the run, and the
name of the run — the run-ID. The configuration file must be called runID.cnf. We start with
the sample.cnf configuration you find in the sample subdirectory. Look into the file using a
simple text editor (such as xemacs, emacs, pico, joe, vi,. . .). You will find in the beginning of
each line a keyword, followed by a value. For example:

runID sample

#how many vortices
nVortices 400

#which ratio of the x and y-length of the system do you want
LxLyRatio 1

So the runID is “sample”. Lines starting with “#” are comments and ignored by the software.
The requested number of vortices is 400. The file is much longer, and please go ahead and study
it. The comments in the file should explain most of the keywords. The complete configuration
file for this example is shown in A.

3.2 The parameter file

We have to create a parameter file from the configuration file. This file spells out (nearly)
all parameters as used in the simulation. The simulation programm (with name vdsim) will
read its parameters from this file. See table 1 to see how the parameter file compares with the
configuration file.

3.3 The creation of the parameter file (vdsimpp)

The parameter file is created by calling the Vortex Dynamics SIMulation Parameter Prepration
program (vdsimpp).

The program vdsimpp takes a runID as a parameter, then attempts to open and read the
file runID.cnf. The runID can contain a path (i.e. myruns/runID.cnf). vdsimpp then parses
the configuration file, and creates a parameter file (runID.par) if all necessary information has
been found in the configuration file runID.cnf. There will are a couple of plausibility checks
which are performed, and either a warning is issued (to stdout, which is usually the screen), or
if fatal problems are detected, an error is reported (to both stdout and stderr) and the program
is aborted. Read the manpage for vdsimpp for more details (see section 8.6.

In our example, we would do
vdsimpp sample
and the program will reply with

3 PREPARING A RUN 6

main():
##
Vortex Dynamics Simulation (vdsimpp)
#
../vdsimpp sample
#
Last modification $Date: 2006/10/09 03:51:38 $
Release $Name: $
Revision $Revision: 1.19 $
Author $Author: fangohr $
#
Sat Mar 9 14:16:17 2002
##

Metaconf::compute_parameters(): Changed n from 400 to 418 (2*19*11)

The last line tells us, that while we requested 400 vortices, for the given value for the magnetic
induction and the required x-y-ratio of the simulation cell (as both specified in sample.cnf), the
program has chosen 418 vortices. The reason for this is that 418 vortices fit in the simulation
cell in the form of a hexagonal lattice. In other words, this choice avoids frustratration. To be
more precise, vortices are arranged in 19 times 11 unit cells, each containing two vortices (those
are the numbers in parathesis), to form a hexagonal lattice.

The created parameter file starts with the following lines:

Configuration: {
runID sample
nVortices 418
simulation_type MDLangevin
nLayers 1
Lengthx 16.1815600380339
Lengthy 16.22632239197948
LxLyRatio 0.9972413740548066
start_timestep 0
stop_timestep 2000
rand_seed -1
dt 0.005
eta 1
mass 0

From this we see that we have 418 vortices, the length of the simulation cell is ≈ 16.18 in
x and ≈ 16.22 in y-direction, and thus the aspect ratio is 0.9972413740548066, which is fairly
close to the value 1.0 we requested in sample.cnf. The complete parameter file for this example
is shown in B.

3.4 Output from vdsimpp

In addition to the parameter file as shown above, vdsimpp creates a couple of other files:
If support for Grace (see www.plasmagate.weizmann.ac.il) has been compiled into vdsimpp,

then vdsimpp creates the following grace project files:

runID_actions_temp.agr Temperature
runID_actions_lor_x.agr Lorentz force (x-component)
runID_actions_lor_y.agr Lorentz force (y-component)
runID_actions_pin_str.agr Pinning strength

It also creates corresponding postscript files of those plots (ending .ps instead of .agr).
For the sample-configuration described here, the tempererature changes at different timesteps

as specified in the configuration file:

3 PREPARING A RUN 7

00 0

1 1

2 2

3 3

0 0

10 10

0 0
0 500 1000 1500 2000

time steps
0

2

4

6

8

10

te
m

pe
ra

tu
re

Action events for changing temperature, runID=sample

Sat Mar 9 15:06:11 2002

Figure 1: Graphical representation of the temperature as a function of time(steps). This
plot is created by vdsimpp and can be seen using, for example, by typing “ghostview
runID actions temp.agr” in a shell.

Action 0 temp 0
Action 100 temp 1
Action 300 temp 2
Action 500 temp 3
Action 700 temp 0
Action 1300 temp 10
Action 1800 temp 0

and this can be seen in runID_actions_temp.agr. To see the file use
xmgrace runID_actions_temp.agr , or use ghostview to see the post-script version
ghostview runID_actions_temp.agr”. The output is shown in figure 1.

If a smooth cut-off [1, 2] is used, then vdsimpp creates runID_c_forceplot.agr
and runID_c_energyplot.agr, and the corresponding postscript files. The _c_ stands for Con-
trol, as those plots can be used to verify that the smooth cut-off does what the user expects.
In particular for small systems the smoothed interaction energy may have a minimum at a dis-
tance smaller than the cut-off distance. This is a problem resulting from choosing too small a
system (or cut-off if given explicitly). vdsimpp attempts to detect such minima in the smoothed
interaction and issues an error if a minimum is spotted. However, it is always useful to be able
to verify that things are working as expected.

If the run (as specified in runID.cnf) requires data for a pinning potential, then the pinning
potential is read by vdsimpp. This ensures that the files are in the right place. It also detects
corrupted pinning data files.

If the run (as specified in runID.cnf) requires data for a meissner potential, then the meissner
potential is read by vdsimpp.

We have now the relevant files in place to start the computation.

4 RUNNING THE SIMULATION 8

4 Running the simulation

The simulation is started with the command vdsim runID, so in our example it would be vdsim
sample.

The program vdsim reads sample.par, and starts the computation as specified in that file.
First, a the configuration is printed to the screen, and then estimates of the required time to
complete the run are printed:

TIME: Sat Mar 9 15:30:59 2002(0.6%)ET:00:16:15<=>Sat Mar 9 15:47:08 2002
TIME: Sat Mar 9 15:31:05 2002(1.2%)ET:00:16:15<=>Sat Mar 9 15:47:08 2002
TIME: Sat Mar 9 15:31:11 2002(1.7%)ET:00:17:12<=>Sat Mar 9 15:48:05 2002
TIME: Sat Mar 9 15:31:17 2002(2.3%)ET:00:17:44<=>Sat Mar 9 15:48:37 2002
Simulation::do_actions(void): time step 100: set temperature to 1.000000
TIME: Sat Mar 9 15:31:23 2002(2.8%)ET:00:17:44<=>Sat Mar 9 15:48:37 2002
TIME: Sat Mar 9 15:31:29 2002(3.4%)ET:00:17:28<=>Sat Mar 9 15:48:21 2002
TIME: Sat Mar 9 15:31:35 2002(4.1%)ET:00:17:04<=>Sat Mar 9 15:47:57 2002

Each “TIME”-line states first the current time, then the amount of the computation done
which is 0.% in the first line above. This is followed by the Estimated Time (ET) that the
simulation needs in total to finish (here around 16 to 17 minutes), followed by the date and time
at which the completion of the run is expected. The estimate may vary as the system load of
your computer can vary, particularly in multi-user environments.

The timing estimate is printed approximately every 5 seconds in the first 3 minutes of a run,
every 5 minutes thereafter, and only every 30 minutes after the first half an hour of computation.

Other statements are printed occasionally, so for example the message that the temperature
has been set to 1 at time step 100 (as was required in the parameter file).

The example shown above was computed on a 200MHz Pentium I, so it is very likely to be
much faster an any other machine one can find nowadays

4.1 Watch progress of simulation while computing

4.1.1 Display in real computation time

It is possible to watch the progression of the simulation as it computes using a special data file.
The line that has to be uncommented (or added, if missing) in the configuration file is datafile
grace special. Every time step data is saved to disk (i.e. every save interval steps), the
new positions are sent to a running instance of xmgrace. Note that if save interval is small
(and your computer is not too fast) lots of cpu-time can be used up by the frequent transfer
of data to grace, and its efforts to display it. In other words, if you experience a remarkable
slow down in the response of your system to mouse-clicks, then consider increasing the value of
save interval.

This option is only suitable if the program is running on a workstation with X. It is useful to
play with parameters to quickly see howe the system reacts. Once a good parameter set has been
found, the computation should be done without this feature. Not using the real-time display
to saves (CPU) time, and allows to run the code on cluster of work stations (without needing
X). Eventually, note that if you (accidentally) close the xmgrace-window, the simulation will
start complaining, and lots of cpu-time is being used by printing those error messages. Thus,
for production purposes this feature should not be used.

4.1.2 Analyse data while computing

It is also possible to analyse the data-files while a computation is running (using vdpp as de-
scribed in section 5). This is the recommended way of investigating the process of a simulation.
(We don’t expect vdpp2 to work reliable when the calculation is still ongoing.)

5 POST-PROCESSING OF DATA 9

5 Post-processing of data

The program vdpp is used to Post-Process Vortex dynamics Data.2

The program vdpp2 is another program to post-process vortex dynamics data, and has been
written later (2006). It using the vdpp program to extract the raw data from the data files and
then carries out additional analysis in the programming language Python. The only reason for
having two programs (vdpp and vdpp2) that do complimentary tasks, is that it is more efficient
to do many post processing tasks in a high level language.

Consequently, it is much easier to extend the functionality of vdpp2 should any new features
be required.

5.1 How much data is stored?

To learn about the data we have now on disk, use vdpp sample (that is assuming that your
runID is “sample”). The program answers with:

setup_range(): Have 81 timesteps, starting at 0 and ending at 2000
main(): No options have been chosen that produce output.

Leaving program now.

Remember that using the -v-switch more detailled information can be obtained (see section
8.5), so if we run vdpp sample -v3, we get

Data::read_ttab(): Read 81 timesteps, starting at 0 and ending at 2000
main(): processing parameter ’-v3’
setup_range(): Have 81 timesteps, starting at 0 and ending at 2000
setup_range():
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000
1025 1050 1075 1100 1125 1150 1175 1200 1225 ... 2000
main(): No options have been chosen that produce output.

Leaving program now.

This tells us in more detail which time-steps are available.

5.2 Processing a range of time steps

5.2.1 Select range

To process only a subset of the stored time steps, we use the range switch. For example, to look
only at time-steps 500 to 1000, we say vdpp sample -range 500 1000 -v3 :

setup_range(): Have 21 timesteps, starting at 500 and ending at 1000
main(): No options have been chosen that produce output.

Leaving program now.

Again, using -v3, we can see explicitly which time steps there are in the range of 500 to
1000:

...
setup_range(): Have 21 timesteps, starting at 500 and ending at 1000
setup_range():
500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000
...

2Admittedly, the choice of names for the PreParation of a SIMulation (vdsimpp) and the for the Post-Processing
(vdpp) is not the best one.

5 POST-PROCESSING OF DATA 10

5.2.2 Skip every nth time step

To skip every 2nd time step, we modify the above command to be vdpp sample -range 500
1000 2 -v3 : (note the 2 after 1000 and before -v3)

...
setup_range(): Have 11 timesteps, starting at 500 and ending at 1000
setup_range():
500 550 600 650 700 750 800 850 900 950 1000
...

5.2.3 Looking at individual time steps

To investigate time step 500, we can use the Time Step-switch -ts in the following manner:
vdpp sample -ts 500. There are two special cases for the first and the last time step: it is
legal to use -ts first and -ts last.

This is particularly useful to look at the last time step of a running simulation if one doesn’t
know which number it is.

As always, more details can be found in the man-page, and by calling the programm incor-
rectly: try
vdpp sample -range to get help on -range, and
vdpp sample -ts to get help on -ts.

5.3 Extract observables

5.3.1 Overview

There is a variety of switches for vdpp to extract information from the data files. All switches
can be combined with the range-switches as explained in section 5.2. An overview is of possible
options is given in table 2. The man-page (see section 8.6) contains a detailed description of all
the options.

In the next sections, we show a couple of examples how to look at the data.

5.4 Histogram of positions

Assume we want to study the melting transition of a vortex system without pinning. Our
example sample.cnf starts with vortices in hexagonal positions and increases the temperature
from timesteps 100 to 1000. This is the right idea to study melting, but clearly in a proper
simulation there should be many more intermediate temperatures, and much more timesteps at
each temperature. However, for the demonstration of the availabe features this will do nicely.

To look at the distribution of vortex positions between time steps 100 and 1000, we create
a 2d-histogram of the positions. We choose a resolution of 200 times 200 pixels, and issue the
command:
vdpp sample -range 100 1000 -hist 200 200

This creates a file sample_pp_poshist0.bin, which contains the histogram in a binary data
format. The file name is composed of the runID, the extension pp, which stands for Post-
Processed data, the word hist to indicate that it is a histogram, and the number 0, because
it is the histogram for layer 0. This will be helpful for multi-layer runs (not fully implemented
yet).

The data format is the same as the binary format chosen by Gnuplot. We provide a program
vdconvert that can convert such binary data in a variety of formats. For example, we can
convert3 the histogram data into a png-file via:
vdconvert sample pp poshist0.bin test.png

3This requires the Magick++ suite to be installed.

5 POST-PROCESSING OF DATA 11

-dump [pos] [vel] [for] [act] (dump data to stdout)
-hist NX NY Create histogram of positions with NX times NY grid cells
-range START [STOP [STEP]] define range of time steps to process
-ts TS | first | last define one time step (TS) to process
-dummy run in only-pretending-to-do-something mode
-cm compute centre of mass position, velocity, meansqr displ.
-disp [0|mean] compute displacement of pancakes
-BG [STARTTIMESTEP] compute B(x) =< [u(0) − u(x)]2 >
-ft KX KY [KX KY] [..] compute Fourier transform (FT) for k = 2π/a0(KX, KY)
-cift N [rad][phi0][range] compute FT for |k| = 4π/a0/

√
3∗rad at Nk’s

-svp [NL NP]...[NL NP] ouput Single Vortex Positions (Layer NL, particle NP)
-snap3d [ZSCALE [SPLPTS]] create snapshots of single timesteps (for Geomview)
-snapgrace create snapshots of single timesteps (for Grace)
-def [L] compute nr of topological defects
-delsnap2d [L] compute 2d delaunay triangulations (for Geomview)
-delsnap3d compute 3d delaunay triangulation (for Geomview)
-hop [L] computes the Hexagonal Order Parameter
-anghist NBIN [L] computes a histogram of bonding angles with NBIN bins
-diffpos [cm] computes displacement between 1. and last step (2d only)
-avgvel computes vortices’ indiv. time-avged velocity (2d,MG)
-ivp store plain positions in file (use for restarting)
-Alex1 variety of options to analyse substrate potiential
-pov produce output for povray (as on title page)
-sbao Simon Bending Array Occupany

Table 2: Overview of options for vdpp. This list can be obtained by calling vdpp without further
parameters. The precise meaning of each option is described in the vdpp-man page.

and look at the file using
xv test.png.

The output, reflecting a hexagonal lattice (because the temperature was lower than the
melting temperature, and there were not enough time steps to allow melting anyway) is shown
in figure 2.

We can also create data for OpenDX using vdconvert sample pp poshist0.bin test.dx
. Figure 3 shows the plot created with OpenDX.

Alternatively, the data in sample pp poshist0.bin can be read into Matlab using readgnu.m
as provided in tools/matlab.

Another option to plot those data (altough maybe less suited for higher resolutions) is
gnuplot. The command in gnuplot is splot "sample pp poshist0.bin" binary with lines,
and the reprensentation looks nice with contour-lines, i.e. set contour base; replot.

Note that in the computation of this histogram only the time steps stored in the data files
have been used. There is another option to create a histogram which consideres all time steps. If
you want to use this, have a look at the “shist’’ commands which are explained in sample.cnf.

5.5 Vortex configuration at one time step

5.5.1 Delaunay triangulation

To see the vortex configuration at, say time step 500, we do vdpp sample -ts 500 -snapgrace
This creates a file sample_pp_snapgrace_del500.agr, which we can plot using
xmgrace sample pp snapgrace del500.agr

The name indicates the runID (sample), post-processed data (pp), it’s a SNAP shot for
GRACE, and it includes a Delaunay triangulation (del). All that for time step 500. The output
is shown in figure 4.

Another file with name sample pp snapgrace.agr is created as well. It has the same content

5 POST-PROCESSING OF DATA 12

Figure 2: Histogram of vortex positions for sample-run between time steps 100 and 1000. Resolution
is 200x200 pixels. (Note: we have inverted the colours, i.e. black becoms white, in order to save
toner for printed versions).

Figure 3: Same data as in figure 2 but visualized using OpenDX. Note that the spikyness of the data
is not suprising since we have only averaged 37 time steps.

5 POST-PROCESSING OF DATA 13

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

sample
sample_pp_snapgrace_del500.agr

Figure 4: Snap shot of vortex positions at time step 500. The Delaunay triangulation shows that
there are no topological defects.

as xmgrace sample pp snapgrace del500.agr, but a more convienient name so it is easier to
type xmgrace sample pp snapgrace.agr. Note that this file will be overwritten if we use vdpp
...-snapgrace the next time.

5.5.2 Topological defects

In time step 1300 in sample.cnf we have set the temperature to a high value of 10. This is
above the melting temperature, and therefore topological defects develop. We can use the same
switch -snapgrace to see those. Figure 5 shows the output.

The positions of the defects are stored in plain ascii text in sample pp snapgrace def1500.dat.
This can be used for further analysis.

5.5.3 Vortex positions

To extract vortex positions at one time step as pure data (to be used in another plotting pro-
gramme, the -ivp option can be used: vdpp sample -ts 500 -ivp creates a file sample pp ivp 500.dat
which can be plotted, for example in gnuplot (via plot "sample pp ivp 500.dat"), or xm-
grace (via xmgrace plot "sample pp ivp 500.dat", or any other 2d-plotting application (Ex-
cel, . . .).

5 POST-PROCESSING OF DATA 14

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

sample
sample_pp_snapgrace_del1500.agr

Figure 5: Snap shot of vortex positions at time step 1500. Topological defects with 7 neareast
neighbours are highlighted by blue circels, and defects with 5 nearest neighbours by red circles.

5 POST-PROCESSING OF DATA 15

0 500 1000 1500 2000
time steps

-8

-7.8

-7.6

-7.4

-7.2

-7

-6.8

-6.6
x-pos
y-pos

Vortex 0
sample_pp_svp_0_000.txt

Figure 6: x and y-components of position r = (x, y) of vortex 0. Note how the actions (as defined
in the configuration and parameter file) are reflected in the motion of the vortex: at time step 100
thermal fluctuations set in, with increasing magnitude up to time step 700, where the temperature
is reduced to 0 again. Then the system relax which is reflected in the smooth damped motion of
the vortex until time step 1000. Then, a Lorentz force in x-direction, and 100 time steps later
in y-direction acts, which results in a motion with constant velocity. At time step 1300 a very
high temperature is applied with results in a break down of the hexagonal lattice and a relatively
pronounced change of position of the vortex. Temperature is set back to zero at time step 1800,
after which the system relaxes. In time step 1999 the vortices are (artificially) set back to their initial
positions, which is clearly visible.

5.6 Track down one vortex

To follow the path of one vortex, we use the Single Vortex Position-switch -svp:
vdpp sample -svp 0 0
The two zeros indicate that we want to get the path of particle in layer 0 (that is the first zero),
and in that layer we want particle number 0. The data is written to sample pp svp 0 000.txt
and a graphical representation is created using xmgrace -nxy sample pp svp 0 000.txt and
shown in figure 6.

5.7 Time-dependant observables

5.7.1 Centre of mass

Even though the vortices are assumed to be massless, we can compute the centre of mass of the
system by averaging the vortex positions. The command is
vdpp sample -cm
and this creates files

• sample pp cmpos.txt containing the position centre of mass

5 POST-PROCESSING OF DATA 16

0 500 1000 1500 2000
time steps

0

0.5

1

ce
nt

re
 o

f m
as

s v
el

oc
ity

x-component
y-component

Figure 7: x and y-components of the centre of mass velocity of the vortex system. Note how the
actions (as defined in the configuration and parameter file) are reflected in the motion of the centre
of mass of the system: at time step 100 thermal fluctuations set in up to time step 700, where the
temperature is reduced to 0 again. If the system was infinitely large, we would not expect the centre
of mass to move under thermal fluctuations. However, since we have a finite system, the centre of
mass performs a random walk. At time step 1000 , a Lorentz force in x-direction, and 100 time
steps later in y-direction acts, which results in a motion with constant velocity, until the force is set
to zero. At time step 1300 a very high temperature is applied which again results in slight changes
of the centre of mass, and thus the velocity of it. In time step 1999 the vortices are (artificially) set
back to their initial positions, which results in a huge (negative) velocity of the centre of mass..

• sample pp cmvel.txt containing the velocity of the centre of mass

• sample pp mnsd.txt containing the MeaN Square Displacement

The mean-square displacement ∆r2(t) = 1
N

∑
i(ri(t0) − ri(t))2 is a measure for the average

distance vortices have moved away from their positions at the first time step at time t0. It can
be used as a measure for diffusion: in a solid this quantity will be constant (assuming vortices
stay in their lattice positions) whereas for a liquid it increases with time.

The data in all those files contain the time step in the first coloumn, the x-component of
the quantity in the second and the y-component in the third coloumn. The data, for example
the center of mass velocity, can be plotted using xmgrace -nxy sample pp cmvel.txt which is
shown in figure 7.

5.7.2 Topological defects

The number of topological defects is computed using
vdpp sample -def
and the result can be plotted via xmgrace sample pp def.txt.

5 POST-PROCESSING OF DATA 17

0 500 1000 1500 2000
time steps

0.2

0.4

0.6

0.8

1

lo
ca

l h
ex

at
ic

 o
rd

er

Figure 8: Shown is the local hexatic order of the system, which is 1.0 for a hexagonal lattic (the
starting configuration). As soon as thermal fluctutainos set in at time step 100, it reduces with
increasing temperature. At time step 700, temperature is set to 0, and the system relaxes back into
a hexagonal lattice. This relaxation continues even when the Lorentz force starts acting at time step
1000. Only when an even higher temperature than before is applied at time step 1300, the hexatic
order decreases again. This time, the lattice brakes down, and the order parameter drops under 0.5.
At time step 1800 the temperature is zero again, and the system tries to minimise its energy which
increases the hexatic order. Since in time step 1999 the vortices are (artificially) set back to their
initial positions, the local hexatic order parameter jumps discontinuosly back to 1.0.

5.7.3 Local hexatic order

We compute local Hexagonal Order Parameter (hop) as described in [1, 2] This parameter is
1.0 for a perfect hexagonal lattice, and goes towards zero for a liquid. It is computed using
the -hop-switch. The data is written to sample pp hop.txt, and can be plotted using xmgrace
sample pp hop.txt. The plot is shown in figure 8.

5.8 The other vdpp: vdpp2

Currently, vdpp2 supports only very few functions. Use vdpp --help to get an overview of these
features.

5.9 Histogram of vortex velocities

One of the analysis capabilities of vdpp2 is to compute the time averaged velocity histogram of
the vortex system. We give an example:

vdpp2 --average-velocity --stopts 1800 sample
This will compute the average velocity of all vortices from time step 0 (default) to timestep

1800 (as specified with the --stopts switch) of the “sample” run.
It takes into account that the periodic boundary conditionts may move a vortex back to

the ’other side’ of the simulation cell and adds the length of the simulation cell to correct this
(should such a ’wrapping’ event occur).

5 POST-PROCESSING OF DATA 18

0.1 0.12 0.14 0.16 0.18 0.2 0.22
average velocity of vortex (time steps 0 to 1800)

0

5

10

15

20

25

nu
m

be
r o

f v
or

tic
es

Figure 9: The average vortex velocity for the ’sample’ run. The average has been taken from time
step 0 to time step 1800. The plot has been created with xmgrace. The spread of the velocities
comes from the thermal fluctuations. The overall move of ≈ 0.015 comes from the applied lorentz
forces. The spread of the velocities here comes from the thermal fluctuations.

Then, this total displacement is divided by the simulation time that has passed (this is the
number of time steps from start time step to stop time step multiplied with dt (as in the .par
file) in simulation units).

Finally, the obtained averaged velocities are written into a file RUNID_pp_avg_vel_tsX-Y.txt
where X is the start time step and Y the the stop time step (where here RUNID is “sample”, X
is 0, and Y is 1800).

The first column contains the x componenent of the averaged velocity, the second column
the y component, the third coloumn the magnitude. Each row corresponds to one vortex.

A second set of three files with names RUNID_pp_avg_vel_tsX-Y_histogram_Z.txt is writ-
ten where Z can be ’v’, ’vx’ and ’vy’. Each of those files contains histogram data for the corre-
sponding average velocities. The default is 50 bins (but can be modified with the –histogram-bins
switch).

To plot the histogram, we can for example use this command: xmgrace sample_pp_avg_vel_ts0-1800_histogram_v.txt

The resulting plot (with the colors of the bars changed, and some labelling of the axes added)
is shown in figure 9.

5.10 What else

There is more out there, including the computation of structure factors (Fourier transforms),
histograms of bond-angles of the Delaunay triangulations, production of output for povray to
produce nicely rendered animations, and more. Do go ahead and study the man page for vdpp.
If there are any questions, please report them to hans.fangohr@physics.org.

6 CASE-STUDY: CURRENT-VOLTAGE CURVE 19

6 Case-study: current-voltage curve

6.1 Introduction

Assume we want to study the current voltage curve of a system of vortices in a random pinning
potential. In principle we will

1. create a pinning potential

2. put vortices into pinning potential (maybe using annealing?)

3. apply a very small driving force (so that vortices don’t start moving yet)

4. increase this driving force every n-thousand time steps (and vortices will start moving)

5. stop increasing the driving force and stop simulation at some point.

6.2 Configuration file

You can use the provided file iv.cnf as a sample to start from (in directory V1/examples/iv).
The important bit in iv.cnf is that we include pinning

#do we want pinning
pinning true
#if yes, a pinning file can be specified
pinfile iv_pin0.bin # default name is IN_pin0.bin (for 2d-runs)

#strength of pinning (choose negativ values for passive pinning)
pin_str 2 #
pinning_interpolation bicubic # or bilinear (default)

and that we specify a pinning strength (here 2). The

6.3 Creation of pinning potential

To be able to create a pinning potential, we need the file iv.par which we get by running
vdsimpp iv. You should get a warning that no pinning file has been found (but that’s okay
because we have not created any yet).

Now that we have iv.par, we can create a pinning potential. The required program is vdpin.
Type just ‘‘vdpin’’ to get an overview of features of vdpin. To create a pinning surface from
scratch, the -n (for New) switch is the best choice.

(If you have pinning potential stored as gray-values in a bitmap, you could use -a to Add a
lengthscale to it and to be able to use it in the simulation.)

Try to type ‘‘vdpin -n’’ to get an overview of possible new pinning potentials. The output
could look like this:

ewpinning(): Possible values for -n are
-nrg runID npins width depth NX NY seed for Random Gaussian
-nrs runID sitedist (in L) pointspersite seed for Random Splines
-npd runID sitedistx sitedisty width depth g_dist for Periodic Dots
-nsb runID scale g_dist Simon Bending’s sample, periodic magnet dots

Let’s distribute a set of Gaussian point-like pins. Therefore, we will use -nrg. Assume that
we want 100 pins, each of width 0.1 (in units of lambda). The depth does not really matter as
the whole pinning will be re-scaled so that the mean-square force is 1.0 f0 (set depth to 1 in
example below). The values NX and NY determine the resolution of the pinning matrix (i.e.
the number of pixels to represent the pinning and we choose 300 and 300). Eventually, the seed
determines the starting point for the random number generator, which determines the positions

6 CASE-STUDY: CURRENT-VOLTAGE CURVE 20

of the pins (we choose 2, any integer will do). Note that the depth of the pins is constant in our
example (not normally distributed as in some papers) and the position of the pins is random.

So, a possible call to vdpin would be:
vdpin -nrg iv 100 0.1 1 300 300 2
and the result is shown in figure 10.

Figure 10: Point-like pinning. Left: gray-scale plot. Right: 3d-presentation using Geomview (con-
vert the iv pin0.bin like this ”vdconvert iv pin0.bin output.mesh and then visualise it with
geomview output.mesh) Note that the left upper corner of the grayscale (on the left) has been
rotated to the front left corner in the right-hand plot.

Alternatively, to get a smoothly varying pinning potential (more like intrinsic pinning), you
can use the -nrs option. The site-distance is the distance of the coarse lattice points which are
assigned random heights (uniform distribution of heights) and between which we interpolated
“pointspersite”-points using cubic splines (in order to get a smooth potential).

Here is an example with coarse points every 0.15 λ, and 4 intermediate points between each
coarse point (random seed=2):

vdpin -nrs iv 0.15 3 2
The resulting pinning potential is shown in figure 11.

6.4 Anneal vortices into pinning surface

One can anneal the vortices into the pinning potential to find a starting configuration that is
well pinned. To do this, the temperature in the simulation has to be reduced slowly from a value
above the melting temperature to zero. The time-steps 100 to 7500 in iv.cnf demonstrate this
schematically. If a stable configuration is important, then different annealing speeds and initial
temperatures should be tested. (Note that the melting temperature depends on the time-step
and the pinning. See seperate documentation for this.)

In other words, in the beginning of the run, we anneal the vortices into the pinning potential.

6.5 Apply increasing driving force

In time-step 10,000 to 210,000 we increase the driving force every 3000 steps. Again, don’t take
this as good practise, it is only meant to demonstrate the system. Many more timesteps at each

6 CASE-STUDY: CURRENT-VOLTAGE CURVE 21

Figure 11: Smoothly varying pinning. Left: gray-scale plot. Right: 3d-presentation using Geomview
showing only a part of the complete simulation cell (convert the iv pin0.bin like this ”vdconvert
iv pin0.bin output.mesh -crop 0 2 0 2 and then visualise it with geomview output.mesh.
This will create the plot on the right handside which shows the area [0..2] × [0..2] of the simulation
cell.)

driving force should be run to ensure the system has enough time to find a steady state at that
drive.

6.6 End of simulation

After having finished the simulation, the usual techniques to extract and visualise data can be
used. See section 5 for a reminder on post-processing data.

Probably, the most important data for current-voltage studies is the centre of mass position
and the centre of mass velocity of the system. They can be obtained using vdpp iv -cm. This
will create files iv pp cmpos.txt and iv pp cmvel.txt. The first contains data like this:

0 0.0341826 -0.182811
50 0.0361866 -0.187288
100 0.0335337 -0.185291
150 0.0320023 -0.191717
200 0.0307934 -0.187844
250 0.0346323 -0.189425
300 0.0284829 -0.190254
350 0.0270439 -0.190613
400 0.0264438 -0.187431
450 0.0232934 -0.188012

where the first column is time step, the second column is the x-component of the centre of mass
and the third column is the y-component of the centre of mass. The data in this file can be
plotted in the standard way (using xmgrace, gnuplot or whatever one likes).

7 ADVANCED CREATION OF PINNING SURFACES 22

7 Advanced creation of pinning surfaces

7.1 How is pinning data stored for vdsim

It is worth knowing roughly how the simulation stores pinning potential.
Any pinning potential that may use, is a function f(x, y) of the two independent spacial

coordinates x and y. Often, we can specify this function analytically (for example a superposition
of Gaussian curves each representing one columnar pin). However, this is not always possible,
and even if we can specify the equation, it may be computational expensive to evaluate that
expression again and again (for every vortex in every time step).

The approach chose here is that we sample f(x, y) at discrete points (xi, yj) with i ∈
0, 1, 2, . . . , Nx and j ∈ 0, 1, 2, . . . , Ny and store this discretised version of f(x, y) in a ma-
trix. For values between of f between the grid points, some interpolation is used (there are at
least two interpolation options).

This means that we need to create a file that stores this matrix. The ’intrinsic’ file format of
vdsim are matrix file4 with the extension bin. (This format is very similar to GNUPLOTs binary
format.) These keep the data in binary (always in Little Endian independent of hardware) and
can be read quickly. For each of these files, there is a second file with extension bin.comment
that carries some additional data.

This format can be converted into a number of formats using vdconvert.
The approach of storing the data in a file and interpolating between grid points also allows

to use arbitrary pinning potentials. For example, if an experimental method would provide a
grayscale plot of the the true pinning potential, then this could be converted into a bitmap file
(and then into a .bin-file using vdconvert) and be used as a pinning potential in the simulation.

(Technical note: for Molecular Dynamics (and Langevin Dynamics) runs, we need the force
that results from this pinning potential. This is evaluated numerically from the potential matrix.)

7.2 The vdconvert tool

The vdconvert program is essential when creating more complicated pinning potentials.

7.2.1 Converting pinning potential files formats

The vdconvert tool that comes with the software allows to convert the simulations own data
format for pinning data into other formats, including bitmaps. This is done very similar to the
convert command that comes with ImageMagick by just specifying the required filename with
extension. We could, for example, convert the pinning file from the iv case study (section 6)
into a bitmap with this command:5 vdconvert iv pin0.bin test.png

The file test.png will contain a bitmap in png format that can be displayed with xview,
ImageMagick or other tools. The grayscale corresponds to height of the pinning potential.

As usual, the vdconvert command provides a brief guide to its capabilities when called
without parameters.

7.2.2 How to export/import pinning data to other (not supported) applications/tools?

Other useful conversion examples include:
vdconvert iv pin0.bin test.txt
This will create a text file containing all the values of the potential in the following format:

The first two integer numbers NX and NY indicate how many coloumns and rows there are. The
4Note that the ’matrix’ file also contains information about the positions xi and yj for which the columns and

rows of the matrix hold the values of f(xi, yj).
5Note that the conversion into bitmaps is only possible if ImageMagick support has been compiled into the

executables.

7 ADVANCED CREATION OF PINNING SURFACES 23

next NX numbers are the x-positions of the grid points. The next line starts with the y-position
of the first grid row followed by NX numbers with the data for this row. The next line starts
with the y-position of the second grid row followed by NX numbers with the data for that row.
In total, there are NY rows with data. The very last line of the file can contain a comment
which is optional.

This text file presentation can be used to convert the pinning data into any required format
to visualise it. Note that it is also possible to convert such a text-pinning data file back to the
normal binary representation:

vdconvert test.txt iv pin0.bin
This allows to compute a required pinning potential in any other language or tool. Once this

is done, it can be written in the txt format as described, and converted into a binary pinning
file.

7.3 Superimposing different pinning structures

Suppose you would like to study the effect of a few strong pins together with less correlated
random pinning. We use the earlier example iv example to demonstrate this. Starting from the
iv.cnf file as provided with the distribution, we need to create the iv.par file with
vdsimpp iv

Subsequently, we can create several pinning potential using the vdpin command and add
them together (we can also scale their relative magnitudes). Because our aim here is to combine
two different pinning potentials, we need to work a bit harder and rename some files in the
process. Here is a complete example:

First we create the random pinning potential (as in figure 11, see text section 6.3):
vdpin -nrs iv 0.15 3 2

This command has created the iv pin0.bin file that contains the pinning potential. We
now need to save this file under another name (we also copy the .comment file although this is
not strictly necessary):
mv iv pin0.bin iv pin0 uncorrelatedpins.bin
mv iv pin0.bin.comment iv pin0 uncorrelatedpins.bin.comment

At this stage, we should find out how many pixels are used in this pinning potential so that
we can generate the next potential (which will be superimposed to this one) with the same
resolution (i.e. number of pixels in x and y direction). To find out the number of pixels we use
these bash commands which will store the number of pixels in variables Nx and Ny.

vdconvert iv_pin0_uncorrelatedpins.bin tmp.stat
cat tmp.stat | grep Nx
cat tmp.stat | grep Ny
Nx=‘cat tmp.stat | grep Nx | head -n 1 | awk ’{print $3}’‘
Ny=‘cat tmp.stat | grep Ny | head -n 1 | awk ’{print $3}’‘

(We could also just look at the tmp.stat file in a text editor (and would find that Nx=343
and Ny=328.)

Now we create the second pinning potential with strong pins with same number of pixels:
vdpin -nrg iv 20 0.3 0.3 NxNy 1

(or just type vdpin -nrg iv 20 0.3 0.3 343 328 1
This has created the new iv pin0.bin file with the strong pins (compare with figure 10)

and the explanations in section 6.3.
Now we save this file somewhere:

mv iv_pin0.bin iv_pin0_strongpins.bin
mv iv_pin0.bin.comment iv_pin0_strongpins.bin.comment

8 LOOSE COLLECTION OF REMARKS 24

Figure 12: The mixed pinning potential.

Now the exciting bit starts: we can build a linear combination of the two potentials. To
demonstrate this, assume we want to make the strong pins half as strong as their default value:
vdconvert iv pin0 strongpins.bin iv pin0 strongpinsscaled.bin -mult 0.5

And finally, we add the pinning potentials together:
vdconvert iv pin0 strongpinsscaled.bin iv pin0 final.bin -add iv pin0 uncorrelatedpins.bin

The resulting potential is shown in figure 12. (We created the figure with this comand:
vdconvert iv pin0 final.bin myfigure.eps .)

Note that we need to choose the right name for the final file for the simulation to load it
(check iv.par if in doubt which name is required):

mv iv_pin0_final.bin iv_pin0.bin
mv iv_pin0_final.bin.comment iv_pin0.bin.comment

Now we could run the simulation as usual:
vdsim iv

and do some postprocessing as usual:
vdpp iv -cm

8 Loose collection of remarks

8.1 Continue run or restart from scratch

Suppose you have started a simulation via vdsim sample, and then it is interrupted (say the
process is killed due to CTRL+C being pressed, or the scheduler stopped the job on a cluster).
Then the computation can be continued from the last stored time step by just starting it again,
i.e. vdsim sample.

If, on the other hand, the configuration file has been changed, and the parameter file updated
(through vdsimpp), then you want to start again from the start-time step, and not from the last
time step stored in the previous run. In this case the command
vdclear runID
will delete all data files, and the subsequently started simulation vdsim runID will start again
from the start time step.

8 LOOSE COLLECTION OF REMARKS 25

8.2 Simulation methods

The code is in principle able to use

• Langevin dynamics

• Monte Carlo methods

• Molecular Dynamics

• Hybrid method

in order to study the physics of the vortex state. Molecular Dynamics (behaviour of particles is
like atoms in vacuum: they have inertial mass, and there is no friction) is only useful a tool for
Hybrid method runs. The Hybrid method is still under develope ment.

The Monte-Carlo method has been used to verify the Langevin method (for example for
melting of a clean system one gets the same melting temperature with both methods), but
does no yet support all the featurs (missing or at least not tested is using a Meissner field for
example.)

The conservative choice which should allow to study most experimental conditions is Langevin
Dynamics. The sample configuration files in this document use Langevin Dynamics.

8.3 Dimensionality

The simulation is fully working for two-dimensional systems.
The code is prepared to be able to compute layered systems, but this is not fully implemented and
tested. It is advised to stick to the 2d case, as long as you don’t want to continue programming
the 3d-case.

8.4 Simulation units

All numbers in the simulation are expressed in dimensionless simulation units. What are those
numbers? The short answer is to look into the parameter file, where there is the following
section:

Scaling_parameters:{
scale.T 6.003760454554897 K
scale.Gamma 0.0025 (recipr=400)
scale.L 1.4e-07 m
scale.t 1.466851242491835e-10 s
scale.f0 2.368312519085602e-13 Nm (f0*a0=0.176247616285282eV)
}

This has to be read as follows. A length x in the simulation, corresponds to a length xL in
SI-units, where L =scale.L=1.4e-07m. Similarly, T is the scaling parameter for temperature, t
for time, f0 for forces.

The more detailed explanation (including analytical expressions) is currently in preparation.

8.5 Verbosity

All programs of the vortex dynamics simulation suite understand the switch -v?, where ? is a
number ranging from 0 to 5. With this verbosity switch the amount of progress and diagnostic
messages can be determined. The meaning of the numbers is as follows:

0 silent – no output messages

1 progress only – minimal output

REFERENCES 26

2 warnings (default) – issue more information, and warnings

3 more warnings – be more picky than 2

4 debug – lots of information

5 extreme debug – extremely detailed information

The default value 2 (warnings) is a sensible choice. However, if something goes wrong (i.e. an
error occurs), it might be worth re-running the program with a higher verbosity value; possibly
the additional messages provide a clue what went wrong.

8.6 Man pages

There is a couple of man-pages in preparation, and partly finished. The files are in the man-
subdiretory. Each file starts with the name of the program it describes, and is followed by .1,
such as vdpp.1. The files are written in the standard unix man-page style, and could be studied
using the man command if they were in the man-search path. If this is not possible, one can type
groff -Tascii -man vdpp.1 | less to see the file nicely displayed. Alternatively, use the
showmanfile-command, which just includes this sequence, i.e. type “showmanfile vdpp.1”.

There are also postscript and ascii-versions of the man-pages in the ps and txt subdirectories.
We have further included some of these page in the appendix D.

References

[1] H. Fangohr, A. R. Price, S. J. Cox, P. A. J. de Groot, G. J. Daniell and K. S Efficient meth-
ods for handling long-range forces in particle-particle simulations. Journal of Computational
Physics, 162, 372–384 (2000).

[2] H. Fangohr, S. J. Cox and P. A. J. de Groot. Vortex dynamics in two-dimensional systems
at high driving forces. Physical Review B, 64, 064505 (2001).

[3] H. Fangohr, P. A. J. de Groot and S. J. Cox. Critical transverse forces in weakly pinned
driven vortex systems. Physical Review B, 63, 064501 (2001).

[4] N. Grigorenko, S. J. Bending, M. J. Van Bael, M. Lange, V. V. Moshchalkov, H. Fangohr,
and P. A. J. de Groot. Symmetry locking and commensurate vortex domain formation in
periodic pinning arrays Physical Review Letters 90 237001 (2003).

[5] Hans Fangohr, Alexei E. Koshelev and Matthew J. W. Dodgson. Vortex matter in layered
superconductors without Josephson coupling: numerical simulations within a mean-field
approach. Physical Review B. 67 174508 (2003) (Preprint available at cond-mat/0210580.

[6] J. Bending, A. N. Grigorenko, M. J. Van Bael, M. Lange, V. V. Moschalkov c, H. Fangohr
and P. A. J. de Groot. Driving force for commensurate vortex domain formation in periodic
pinning arrays. Physica C: Superconductivity 404 50-55 (2004).

A CONFIGURATION FILE 27

A Configuration file

##
#
This is a sample meta configuration file for the Vortex Dynamics SIMulation
project from the University of Southampton.
#
Report bugs and queries to Hans Fangohr (hans.fangohr@physics.org).
#
$Header: /Users/svn/cvs/VD/V1/docu/usage_sample.cnf.tex,v 1.1 2002/03/10 00:28:30 fangohr Exp $
#
##

#lines starting with "#" are comments, and ignored.

#what is the run-ID of this run? This will prepend all data files.
runID sample

#how many layers (more than one layer is experimental at the moment)
nLayers 1

#how many vortices
nVortices 400

#which ratio of the x and y-length of the system do you want
LxLyRatio 1

#if allow_frustration is false, then the size of the simulation cell
#is computed to get the given induction (B) and the given number of
#vortices (nVortices). If you want to force a certain size, set this
#to true.

allow_frustration false

#if allow_frustration is true, then specify the required size of the system
#Lengthx 10
#Lengthy 10

#how many time steps shall we compute? (start_timestep 0 is usually a good choice)
start_timestep 0
stop_timestep 2000

#save data to files every how many timesteps
save_interval 25

#magnetic induction (in Tesla)
B 0.167956

#Penetration depth in meters. This defines the unit length
phy.lambda0 1400e-10

#is lambda constant, or a function of temperature and field
#(keep this true - lambda as a function of temperature and field is experimental)
lambda_const true

#time step size (in simulation units)
dt 0.005

#save time by building a neigbour lookup table?
neighbour_lookup true

#if neighbour_lookup=true, how big is the "skin" layer around the

A CONFIGURATION FILE 28

#cutoff circle that we include in the lookuptable? This is relativ to
#the cut-off length. (Good choices are 0.1 to 0.2, with a bigger value for higher
#numbers of vortices in the system)
neighbour_fraction 0.1

#do we have a meissner current (set to true if boundary conditions are not periodic, but hard or open)
meissner false

#Is this a Langevin, or Molecular dynamics simulation, or a Monte Carlo run?
#(Documentation currently refers to MDLangevin so its safer to stick to that)
simulation_type MDLangevin
#simulation_type MC

#smooth cut-off:
#What type of IN-LAYER potential do you want?
#Options are (none log, K0, smooth_log, smooth_K0, 1_over_r, smooth_1_over_r)
inlayer_potential smooth_log

#What in-layer computation type do you want? (cutoff, infrep)
inlayer_comp cutoff

#Cutoff-Configuration
#fade interaction over how many a0 (recommended is 3)
cc.fadedist_a0 3

#what is the cutoff radius (in a0)
cc.cutoff_a0 6.5
#or in lambda
#cc.cutoff

#if you want an ininite lattice summation for the log-interaction as suggested by Jensen,
#then use the following parameters:
#
#inlayer_potential log
#inlayer_comp infrep
#precompute_interaction true

#is this a substrate run? (not documented yet)
subs_type none
#subs_update_steps 500
#subs_rings 3
#subs_allow_any_orientation false

#what boundary codnitions to apply in x and y direction? (periodic, hard, open)
xy_boundaries periodic

#viscosity for pancakes (should be one for Langevin run, 0 for Molecular Dynamics)
eta 1

#do vortices have mass (should be zero for Langevin run, >0 for Molecular Dynamics)
mass 0

#What is the initial distribution of pancakes (hexlatt, random, fromfile)
initial_pos hexlatt

#Initial temperature (in simulation units)
temp 0

#initial driving force (in components and units of f0)

A CONFIGURATION FILE 29

lor_x 0
lor_y 0

#do we want pinning
pinning false
#if yes, a pinning file can be specified
#pinfile vdsim_pin0.bin

#strength of pinning in f0 (choose negativ values for passive pinning)
pin_str 0

which data files do we want?

#this is the main data file
datafile positions binfloat This_is_binary_data_for_the_positions

#and other standard files:
datafile energy txt nocomme4nt
datafile actions txt

#And some more specialized files, mainly for debugging:
#datafile velocities txt This_is_txt_data_for_the_velocities
#datafile olddebug txt
#datafile forces txt
#datafile xc special

#uncomment the next line to watch the simulation evolve while computing. Needs xmgrace installed.
#datafile grace special

#creade a detailed histogram of vortex positions while computing
#(considering vortex positions in every time step)
shist.use true
#how many pixels in this historgram
shist.nx 500
shist.ny 500
#shist.filename testhist.bin

#what is the seed for the random number generation (some negative integer)
rand_seed -1

#which actions are there? Possible are "temp", "pin_str", "lor_x", "lor_y", "read_pos".
#"read_pos" re-reads the initial positions from ivp-file
#
general format is "Action TIMESTEP ACTIONTYPE VALUE"

Action 0 temp 0
Action 100 temp 1
Action 300 temp 2
Action 500 temp 3
Action 700 temp 0
Action 1000 lor_x 1
Action 1100 lor_y 1
Action 1200 lor_x 0
Action 1300 lor_y 0
Action 1300 temp 10
Action 1800 temp 0
Action 1999 read_pos

B PARAMETER FILE 30

B Parameter file

Configuration: {
runID sample
nVortices 418
simulation_type MDLangevin
nLayers 1
Lengthx 16.1815600380339
Lengthy 16.22632239197948
LxLyRatio 0.9972413740548066
start_timestep 0
stop_timestep 2000
rand_seed -1
dt 0.005
eta 1
mass 0
xy_boundaries periodic
z_boundary none
allow_frustration false
inlayer_potential smooth_log
integration Euler
inlayer_comp cutoff
interlayer_force none
interlayer_force_mag 0
datafile_root sample_dat
ivp_file sample.ivp
save_interval 25
a0 0.8516610546333629
lambda0 1
neighbour_lookup true
neighbour_fraction 0.1
lambda_const true

Physical_parameters:{
phy.a0 1.192325476486708e-07 m
phy.B 0.167956 T
phy.lambda0 1.4e-07 m
phy.Bc2 100 T
phy.Tc 93 K
phy.rho_n 1e-06 rho_n
phy.l_sep 1.2e-09 m
}

Scaling_parameters:{
scale.T 6.003760454554897 K
scale.Gamma 0.0025 (recipr=400)
scale.L 1.4e-07 m
scale.t 1.466851242491835e-10 s
scale.f0 2.368312519085602e-13 Nm (f0*a0=0.176247616285282eV)
}

pinning false
Pinning files {
}

Meissner-current {
meissner false
}

shist {
shist.iteration -1
shist.last_iteration -1
shist.use false

B PARAMETER FILE 31

shist.nx -1
shist.ny -1
shist.filename NONE
}

cutoff: {
cc.cutoff 5.535796855116859
cc.cutoff2 30.64504682112171
cc.fadeoff 2.98081369121677
cc.fadeoff2 8.885250261745348
cc.fadedist_a0 3
#Coefficients for cubic fading polynomial:
cc.fade_p0 -0.5249623012084513
cc.fade_p1 0.8941160024100321
cc.fade_p2 -0.2716394023956715
cc.fade_p3 0.02298756586386766
cc.fade_ec -0.6292333510266626
cc.fade_ecinf -1.459543252765138
cc.lambdaTB* 1
cc.lambdaTB2* 1
}

datafile_list: {
datafile positions bin This_is_binary_data_for_the_positions
datafile energy txt nocomme4nt
datafile actions txt
datafile grace special
}

precompute_interaction false

Substrate_configuration: {
subs_type none
}

Action_list: { 16
Action 0 temp 0
Action 0 lor_x 0
Action 0 lor_y 0
Action 0 pin_str 0
Action 0 read_pos 0
Action 100 temp 1
Action 300 temp 2
Action 500 temp 3
Action 700 temp 0
Action 1000 lor_x 1
Action 1100 lor_y 1
Action 1200 lor_x 0
Action 1300 lor_y 0
Action 1300 temp 10
Action 1800 temp 0
Action 1999 read_pos 0
}
}

C MINI INTRODUCTION TO XMGRACE 32

C Mini introduction to xmgrace

This section may be useful to demonstrate the power of xmgrace to new users. It is one of the
best (free) tools to create quality 2d graphs. Here are some examples showing how to use it:

Run the vdsimpp sample example (see section 3.2). This produces a file sample.ivp which
keeps thhe starting positions of the vortices. Have a look at the file: it is just a text file with
two columns (containing the x- and y-positions of the vortices).

Now install xmgrace if you haven’t done so.
Then start it with this command:
xmgrace -nxy sample.ivp
You will see that xmgrace (also called ’grace’ for short) plots the vortex positions (a hexagonal

lattice) but connects all the positions with lines. (That is just xmgrace’s default).
We can change that like this: (Method A):
In the menu click on Plot→Set Appearance. Then in ’Line properties’ choose the ’Type’

field and change it from ’Straight’ to ’None’. Then click ’Apply’. You will see that the lines
have disappeared from the plot. In the same window, in ’Symbol properties’ click on Type and
choose ’Circle. Then click ’Apply’ again. Now you should see the vortex positions shown as
circles. Click ’Close’ to close that menu window.

Method B: just double click on your data (one of the circles) and you should get to the same
window.

To modifiy the labels, click on Plot→Axis Properties. Here you can define axes labels etc.
Again, don’t forget to click ’Apply’ after you have done any changes.

Finally, you can save the plot (the data and the formatting) by going to File-Save. Then
enter a file name. It should end in ’.agr’ – this is the right ending for Grace files. Suppose you
call the file test.agr and save it. You can now leave grace.

When you start it again, you could load this file immediately by typing
xmgrace test.agr
If you look into the test.agr file (with emacs for example), you see that is also just a text file

but contains the data and some formatting.
Let’s see how we can use to look at some post processing data. For this we need to run the

simulation, i.e.
vdsim sample
Once this is finished, we can create some post processing data.
Let’s first look the hexagonal order parameter. This is 1.0 for a perfect hexagonal lattice

and 0 for a completely random distribution of vortex positions. You create the data with
vdpp sample -hop
and plot it with
xmgrace sample_pp_hop.txt
This is the mode where the vdpp program writes simple text files, often with two columns

that contain the data to be plotted.
Then there is another mode where vdpp produces agr files. This is useful, for example, to

visualise the topological defects in the system. If you run this command:
vdpp sample -ts 1900 -snapgrace
then this will create the following files: (i) sample_pp_snapgrace_del1900.agr
This you can visualise with
xmgrace sample_pp_snapgrace_del1900.agr
(if there are too many numbers on the axes, just click the ’AutoT’ button on the left).
(ii) sample_pp_snapgrace_def1900.dat This is, again, just a text file that identifies the

positions of topological defects. This can be used if you would like to plot (or use) the data with
another application than xmgrace.

D MAN PAGES 33

I hope this gives you some ideas (and shows that simple xmgrace usage is not too hard to
learn). Try the manual on http://plasma-gate.weizmann.ac.il/Grace/

(At the time of writing the current version was 5.1.20 but there are not many changes from
version to version).

D Man pages

D.1 Overview

vd (1) HPC Southampton vd(1)

NAME
vd - a suite of tools to model Vortex Dynamics

INTRODUCTION
There is a set of programs (see list below) that prepare , run , and help
analysing simulations of the dynamics of vortices . Vortices are roots
of the quantum - mechanical wavefunction in a type -II superconductor . The
vortex dynamics suite identifies vortices as straight lines (for 2d
simulations) or as a stack of points or pancakes (for 3d simulations).

PHYSICS
The underlying physics , and the precise equations used are available
from [1,2,3] or , of course , from the source code . There is information
on the governing equations [1,2] and on a new method [3] and implemen -
tation [1] of the cut -off of the vortex -vortex interaction .

Simulations of 3dimensional materials can either be done with a set of
2d layers such that pancakes in different layers build a stack and rep -
resent a vortex line . Alternatively , the substrate model [4] can be
used where only one layer is considered and the effective pinning from
pancakes in all other layers is represented by a substrate potential .
This requires to iterate runs and to update the substrate potential
(which is a function of the averaged spatial distribution of vortices)
after each run.

PROGRAMS
The following programs exist , and each has its own man -page :

- vdsimpp PrePares a SIMulation (cnf -> par)
- vdpin creates PINning (par -> pin)
- vdsim runs the SIMulation (par , pin -> data)
- vdpp PostProcesses data (par , data -> pp)
- vdpp2 PostProcesses data (par , data -> pp)
- vdconvert CONVERTs different matrix formats
- vdplatform tells about compilation PLATFORM
- vdmeissner computes a Meissner -current potential (if not using pbc)

There are more man -pages , each detailing a specific type of file

- vd.cnf (meta) configuration file
- vd.par parameter file
- vd.pin pinning file
- vd.data data file formats
- vdpp PostProcessing of data

SHARED SYNOPSIS

D MAN PAGES 34

vd* [SPECIFIC OPTIONS] [SHARED OPTIONS]

SHARED OPTIONS
-vN set verbosity to level N. Possible values for N:

0 silent
1 progress only
2 warnings (DEFAULT)
3 more warnings
4 debug
5 extreme debug

TODO
Too many things to be listed. Major improvements include
- addition of multi -pol method for log - interaction
- fix broken multi -pol code for K0 -interaction
- convert simulation into Monte Carlo (MC) (partly done)
- add Hybrid MC features

REFERENCES
[1] Hans Fangohr , Simon J. Cox and Peter A.J. de Groot. Vortex dynam -
ics in two - dimensional systems at high driving forces.
Phys . Rev. B. 64, 064505. (2001) (Preprint available at cond -

mat /0104455.)
[2] Hans Fangohr , Peter A. J. de Groot and Simon J. Cox. Critical
Transverse Forces in Weakly Pinned Driven Vortex Systems .
Phys . Rev. B. 63, 064501. (2001) (Preprint available at cond -

mat /0005263.)
[3] Hans Fangohr , Andrew R. Price , Simon J. Cox , Peter A.J. de Groot ,
Geoffrey J. Daniell and Ken S. Thomas Efficient Methods for Handling
Long -Range Forces in Particle -Particle Simulations .
Journal of Computational Physics , 162 p.372 -384 (2000). (Preprint

available at physics /0004013.)

SEE ALSO
vdsimpp (1), vdsim(1), vdpin(1), vdpp (1), vd.cnf (1), vd.par (1),
vd.data (1)

HISTORY
The code is a refined C++ implementation of a C program written by Hans
in 1998/1999.

AUTHORS
The vd -tools are mainly written by Hans Fangohr (hans .fan -
gohr@physics .org). Alexa Robinson (amr99r@ecs .soton.ac.uk) contributed
to the class design and provided the multi -pol code for the K0 interac -
tion .

Overview (vd) Vortex Dynamics vd(1)

D MAN PAGES 35

D.2 vdsimpp

vdsimpp (1) HPC Southampton vdsimpp (1)

NAME
vdsimpp - PrePare a vortex dynamics run (creates .par from .cnf)

SYNOPSIS
vdsimpp [runID] [OPTIONS]

DESCRIPTION
vdsimpp takes a runID , then attempts to open and read the file
runID.cnf. The runID can contain a path (i.e. myruns/runID.cnf).
vdsimpp then parses the configuration file , and creates a parameter
file (runID.par) if all necessary information has been found in the
configuration file runID.cnf. See vd.cnf for a detailed list of
(required) keywords (that have to be present) in runID.cnf.

If support for Grace (www. plasmagate .weizmann .ac.il) has been compiled
into vdsimpp (Preprocessor option is -DUSE_GRACE) then vdsimpp creates
the following grace project files:

runID_actions_temp .agr Temperature
runID_actions_lor_x .agr Lorentz force (x-component)
runID_actions_lor_y .agr Lorentz force (y-component)
runID_actions_pin_str .agr Pinning strength

It also creates corresponding postscript files of those plots (ending
.ps instead of .agr).

If a smooth cut -off is used , then vdsimpp creates runID_c_forceplot .agr
and runID_c_energyplot .agr , and the corresponding postscript files. The
c stands for Control , as those plots can be used to verify that the
smooth cut -off does what the user expects. In particular for small sys -
tems the smoothed interaction energy may have a minimum at a distance
smaller than the cut -off distance . This is a problem resulting from
choosing too small a system (or cut -off if given explicitly). vdsimpp
attempts to detect such minima in the smoothed interaction and issues
an error if a minimum is spotted . However , it has not been shown yet
that the method for this works in all generality .

If the run (as specified in runID.cnf) requires data for a pinning
potential , then the pinning potential is read by vdsimpp . This ensures
that the files are in the right place. It also detects corrupted pin -
ning data files.

If the run (as specified in runID.cnf) requires data for a meissner
potential , then the meissner potential is read by vdsimpp .

OPTIONS
-q run in quick mode : do not produce action plots , control plots ,

and do not load pinning data .

-vN set verbosity to level N. See vd (1) for details.

-x create a sample [runID]. cnf file

SEE ALSO
vd(1), vdsim(1), vdpin (1), vdpp (1), vd.cnf (1), vd.par (1), vd.data (1),
vd.pp (1)

D MAN PAGES 36

AUTHORS
Hans Fangohr (hans .fangohr@physics .org)

vdsimpp Vortex Dynamics vdsimpp (1)

D MAN PAGES 37

D.3 vd.par

vd.par (1) HPC Southampton vd.par (1)

NAME
vd.par - Parameter file for vortex dynamics

DESCRIPTION
vd.par is being created from .cnf by vdsimpp (1), and should not be mod -
ified manually (this is assuming that the runID="vd "). We describe all
parameter that appear in a .par -file . The program vdsimpp will assume
certain default values for some parameters if they are not specified in
the .cnf -file . This can be overridden , by specifying such values in the
.cnf -file .

KEYWORDS
runID runID

specifies the identifier of the run. Needs to agree with runID
in filename runID.cnf

nVortices N
specifies number of vortices in layer

nLayers l
specify the number of layers (default =1)

LxLyRatio r
specifies the requested ratio of Length in x and y direction .
vdsimpp will try to take choose a system size and geometry that
is as close to the value of LxLyRatio in runId.cnf as possible ,
but also garuantees that a hexagonal lattice fits in the simula -
tion cell . The value of LxLyRation shown in run.par ist the
actual value being used .

Lengthx Lx

Lengthy Ly
Length of the simulation cell in x and y-direction . See LxLyRa -
tio

allow_frustration true | false
if allow_frustration =false , then the number of vortices and the
system size is computed as a function of LxLyRatio , nVortices ,
and B. Otherwise , the chosen size (Lengthx , Lengthy) and number
of vortices is used .

start_timestep s
The simulation will start at time step s. For Monte -Carlo/Hybrid
runs this is the sweep number.

stop_timestep t
The simulation will stop at time step t. For Monte -Carlo/Hybrid
runs this is the sweep number.

rand_seed n
Random seed as passed to ran1 .c of Numerical Recipies . This num -
ber n should be a negative integer.

dt dt Size of time step in simulation units for Langevin /MD runs . Typ -

D MAN PAGES 38

ical value is 0.005.

eta eta
Value of friction coefficent in equatin of motion. For Langevin -
runs set eta =1.0 and the mass =0. For MD -runs without friction
set eta =0.0, and mass !=0.

mass mass
Mass of vortices . See eta.

xy_boundaries periodic | hard | none | bouncy
The standard choice is ’periodic ’. If you don ’t want that , try
’hard ’ in combination with a meissner -potential (see vdmeiss -
ner). Other modes are mainly used for debugging .

z_boundary periodic | none
See xy_boundaries

inlayer_potential log | smooth_log | K0 | smooth_K0 | 1_over_r |
smooth_1_over_r | none

Determines which interaction is used for vortices within one
layer.

integration Euler
Determines type of time step integration . (Other sensible option
could be predictor -corrector methods . But those are only appli -
cable for T=0 (in Langevin mode) and are not implemented in this
version .)

inlayer_comp cutoff | infrep | direct | fmm
Determines type of computation used for inlayer -interaction .
’cutoff ’ used a cut -off approach , either smooth or naive ,
depending on inlayer_potential . ’infrep ’ used the method sug -
gested by Groenbech -Jensen for log , and the method suggested by
Cox (in Fangohr et.al , JCompPhys 162 p.372 -384 , 2000) for K0.
(The latter is not implemented yet). ’direct ’ just computes the
pairwise interaction and is apart from debugging not useful.
’fmm ’ uses the fast -multipole method but is not finished
(amr99r@ecs .soton.ac.uk).

interlayer_force none | hook
Determines inter -layer interaction for layered system. ’none ’
should be used for effectively two -dimensional runs , and ’hook ’
applies Hook ’s law , i.e. a harmonic potential between pancakes
in different layers. interlayer_force_mag x Determines the
magnitude of the inter -layer force.

datafile_root *_dat
The root -name of the data -file , usually runID_dat . (chosen auto -
matically)

ivp_file *. ivp
The name of the file keeping the Initial Vortex Positions . This
defaults to runID.ivp , but can be overridden with "ini -
tial_pos_file " in the .cnf -file .

save_interval N
Safe data every N timesteps . Sensible values are about N=100, or
N=20 for lots of data , or N=1000 to save disk space.

a0 float
The vortex lattice spacing in simulation units.

D MAN PAGES 39

lambda0 float
The zero -temperature and zero -field penetration length lambda
(in simulation units).

neighbour_lookup true |false
Whether to use a lookup table for neighbours . This increases
code execution if a cut -off is being used .

neighbour_fraction float
The skin -thickness for the pre -computation of nearest neighbours
in units of the cut -off distance . A good value is 0.1, or for
larger systems (>2000 particles) 0.2. The higher this number ,
the more neighbours are included in each force computation , but
the less frequently has the neighbour list to be updated . It ’s a
tradeoff .

lambda_const true | false
If true , then lamba is constant for all temperatuers , and
fields. If false , then lamba varies and diverges close to T_c
and B_c. This is not tested yet.

SEE ALSO
vd(1), vdsim(1), vdpin (1), vdpp (1), vsimpp (1), vd.par (1), vd.data (1),
vd.pp (1)

AUTHORS
Hans Fangohr (hans .fangohr@physics .org)

vd.par Vortex Dynamics vd.par (1)

D MAN PAGES 40

D.4 vdpp

vdpp (1) HPC Southampton vdpp (1)

NAME
vdpp - Post -Processing of a vortex dynamics run (creates _pp_ * from
.par and _dat -files)

SYNOPSIS
vdpp [runID] [OPTIONS]

DESCRIPTION
vdpp takes a runID , then attempts to open and read the file runID.par ,
and the corresponding data files listed in runID.par. (The master
data -file is runID_dat .) All data produced by vdpp is either displayed
on stdout , or usually stored in a file runID_pp_xxx .yyy where xxx is a
(hopefully) sensible description of the type of information , and yyy
refers to the data format. Common data formats are .dat and .txt (both
txt -files to be plotted with xmgrace for example), or .bin which is a
binary storage format for matrix -date (see vdconvert), or as a .agr
file , which can be viewed with xmgrace.

vdpp can safely be run on a simulation which is computing .

OPTIONS
If no options are given (but a runID), then vdpp shows how many
timesteps are available in the data file . As always , more information
is available using the switches -v [0-5], where 5 gives the most
details , and 0 is silent.

Specify a range: the chosen production of certain observables (as
listed below) will be performed (a) by default for all stored
timesteps . Or (b) for a given range of timesteps . Or (c) only for the
first , last , or a particular timestep . Here are the details :

-range FIRST LAST [SKIP]
Data analysis starts at FIRST timestep , and ends at LAST
timestep . If skip is given , then only every SKIPs timestep is
processend (the others are skipped).

-ts first | last | TIMESTEP
Process only the first , or the last timestep , or timestep
TIMESTEP .

Other Options:

-dummy Only pretending to analyse the data . Useful to check the effect
of the -range switch.

-dump pos|vel|for|act|ene
dump the POSitions , VELocities , FORces and ACTions (if avail -
able) to stdout. This can be used to convert the data into any
desired format. The positions are listed per timepstep , per
layer , one particle per line (x and y position). Similar for
velocities and forces. Actions are listed as pinning strength ,
temperature , Lorent -force x, Lorentz -force y. Energies are

D MAN PAGES 41

listed as total energy , potential energy (vortex -vortex interac -
tion), kinetic energy (only if particles have mass), and pinning
energy. (If you are using a meissner field , then this accounts
towards the pinning energy .)

-hist NX NY
Create 2d-histogram of positions with NX times NY grid cells. In
other words: a measure for the probability to find a vortex in a
certain part of the simulation area . Note that only the stored
timesteps can contribute to this histogram . If you want a
detailed histogram , then use shist=true in your config file . The
histogram is stored as a .bin -file and can be converted to other
data formats using vdconvert .

-cm Compute (a) the centre of mass displacement of the system
(_pp_cmpos .txt), (b) the centre of mass velocity of the system
(pp_cmvel .txt), and (c) the mean -square displacement of the sys -
tem (_pp_mnsd .txt). (a) and (b) can be used for simulations of
current -voltage curves , (c) is a measure of the diffusion of
vortices (for a non -moving system). The mean -square displacement
is _{vortices } ((r(t) - r(t_0))^2 / n_vortices .

-disp Attempt to compute <u^2>. Experimental . Try to use to get some
more information .

-BG Attempt to compute the Bragg -glass correlation function . Experi -
mental. Try to use to get some more information .

-ft KX KY [KX KY] [..]
Compute Fourier transform (FT) for k=2*pi/a0(KX ,KY). You need to
give KX and KY in units of 2pi/a0. (This is what one usually
wants.) The fourier transform can be computed for any number of
k-vectors , but each vector needs to have a kx and ky -component .
Data is written to pp_ft_l ?.txt , where ? is the layer (?=0 for
2d-runs).

-cift N [rad [phi0 range]]]
Compute Fourier Transformation (FT) for k-vectors of Circle with
radius |k|=4* pi/a0/sqrt (3)* rad. The FT is computed at N equiv -
ally spaced poins on that circle. By specifying phi0 and range ,
only a part of the circle is computed . Data is written to
_pp_cift .bin as a matrix , with phi in x-direction , and the time
in y- direction . Additionally , the maximum of the FT -data for
each time step is written to _pp_cift_max .dat. This is handy to
quickly see whether a system is molton , or a (hexagonal) solid.

-svp N L [N L] [N L]
Single Vortex Position : write the positions of vortex N (start
counting from 0) in layer L (start counting from 0) into
_pp_svp_L_N .txt. This is handy to be able to look at the motion
of individual vortices as a function of time . Can be done for as
many vortices as listed after -svp.

D MAN PAGES 42

-snap3d [ZSCALE [SPLPTS]
create snapshots of single timesteps of three - dimensional system
for Geomview . Experimental . ZSCALE stretches the sytem in z-
direction , and SPLPTS in the number of SPLinePoinTS that are
used to interpolate the vortex line between two layers.

-snapgrace
computes for every timestep a Delaunay presentation of the data ,
including topological defects. Data is written to _pp_snap -
grace_delTS .agr , where TS is the timestep . Another file
_pp_snapgrace_defTS .dat keeps the positions of topological
defects. Also , the last timestep that is processed , produces a
file _pp_snapgrace .agr , which is handy for quickly looking at
the current configuration of a running simulation : "vdpp runID
-ts last -snapgrace ; xmgrace runID_pp_snapgrace .agr ".

-delsnap2d [L]
compute DELaunay triangulation of SNAP shot in 2D-representation
for Geomview for layer L (default is L=0 for 2d-runs). For every
timestep , a file _pp_delsnap2d_tTS_lL .skel is written , where TS
is the timestep , and L the layer. Also , a file _pp_animate_del -
snap2d_L0 is written , which contains a list of all .skel -files
just produced . This file can be read as a script in Geomview ’s
animator module to display an animation of the system.

-delsnap3d [L]
As -delsnap2d , but for 3d-systems. Not implemented yet.

-hop [L]
Compute local hexagonal order parameter for layer L (default is
L=0) as described in Phys . Rev. B. 64, 064505. (2001) (Preprint
available at cond -mat /0104455.) This parameter is 1.0 for a per -
fect hexagonal lattice , and goes towards zero for a liquid. Data
is written to _pp_hop.txt.

-anghist NBINS [L]
Compute the distribution of bonding angles between vortices with
NBIS bins . For a hexagonal lattice , expect a delta -like peak at
60 degrees . Data is written to _pp_anghist_TS0_TS1 .txt , where
TS0 is the starting TimeStep , and TS1 is the final timestep .
Degrees are given in radians .

-diffpos [cm]
Computes the relativ change in position between timestep start
and timestep end for all vortices . It then creates _diff -
pos_TS0_TS1 .agr , where TS0 is the starting TimeStep , and TS1 is
the final timestep . If "cm" is given , then the centre of mass
motion is subtracted from the relativ displacement . The result -
ing grace -project file , will show one line for every vortex dis -
placement .

-diffposhack [cm] As -diffpos , but the resulting .agr -file will
show a 2d-vector field (the displacement field). However ,
depending on the version of grace you use , it is possible that
the length of the vectors is not accurate , but can be scaled to

D MAN PAGES 43

any value. (Does anyone need this feature ? It should be fixed.)
It is safer to use -diffpos .

-avgvel
Compute for each vortex its average velocity between the first
and the last timestep chosen. Store results into _pp_avgvel .dat ,
showing the average velocity for every particle .

-ivp Save positions of every timestep into text file of name
_pp_ivp_TS .dat , where TS is the current timestep . Useful to
quickly plot the positions of one timestep (using grace , gnu -
plot , etc ...)

-Alex1 compute a variety of observables for substrate runs using only
k-vectors that are reciprocal lattice vectors to compute sub -
strate (code word Alex1). Further options

-Alex1 potx n [y] [xmin xmax] cut potential along y from xmin
to xmax with n points

-Alex1 poty n [x] [ymin ymax] cut potential along x from ymin
to ymax with n points The default for x/y/min/max is the system
size .

-Alex1 potxy nx ny [xmin ymin xmax ymax] compute potential
matrix with nx times ny points

-Alex1 alpha compute alpha (the substrate curvature)

-pov create for each timestep TS a file _pp_tsTS .pov , which can be
read by povray (using povray -I _pp_tsTS .pov) to render a ray -
tracing scene from it. With a little more work (to be done soon
hopefully), a set of such .pov -files can be converted into an
animation (mng/mpeg /avi ...)

-sbao Simon Bending Array Occupation . For simulations of square
arrays , this creates an agr -file for every timestep , in which
array site are shown as occupied if a vortex is close to that
site , unoccupied if no vortex is close to the site . Intermediate
vortices (which could not be allocated to a site) are shown as
interstitials .

-vN set verbosity to level N. See vd (1) for details .

SEE ALSO
vd(1), vdsim(1), vdpin (1), vdpp (1), vd.cnf (1), vd.par (1), vd.data (1),
vd.pp (1)

AUTHORS
Hans Fangohr (hans .fangohr@physics .org)

D MAN PAGES 44

vdpp Vortex Dynamics vdpp (1)

D MAN PAGES 45

D.5 vdpp2

vdpp2(1) HPC Southampton vdpp2(1)

NAME
vdpp2 - Post - Processing of a vortex dynamics run (creates _pp_ * from
.par and _dat -files)

SYNOPSIS
vdpp2 [runID] [OPTIONS]

DESCRIPTION
vdpp2 is similar to vdpp . Differences are: vdpp2 cannot be used reli -
able while a computation is running . vdpp2 is implemented in Python.

OPTIONS
The man page for vdpp2 is available via "vdpp2 -h" and "vdpp2 -H".

SEE ALSO
vdpp (1)

AUTHORS
Hans Fangohr (hans .fangohr@physics .org)

vdpp2 Vortex Dynamics vdpp2(1)

E TO DO 46

E To do

• finish man-pages (vdconvert, vdpin missing)

• explain meissner field

• add FAQ

• explain substrate

• provide intstructions how to report bugs

• add Reference to Jensen

• add version information

