
Background information on vdsim, the

Vortex Dynamics SIMulation

Hans Fangohr, November 2002

Header: /Users/svn/cvs/VD/V1Docu/V1docu/userguide/main.tex,v 1.1.1.1 2002/11/05 18:14:10 fangohr Exp

1



Abstract

An overview of the Vortex Dynamics SIMulation package is given.

• Chapter 1 gives some background on the vortex state (just a summary from
other works).

• Chapter 2 shows some equations being used in the simulation, and demonstrates
some of the internals of the simulation.

• In chapter 3 we show that the long-range nature of the vortex-vortex interaction
can result in numerical artefacts, and provide two techniques to overcome these
problems: (i) using a ‘smooth’ cut-off which reduces the interaction force near
the cut-off smoothly to zero, and (ii) an infinite lattice summation technique
applicable for a K0-Bessel function interaction potential.
This is mainly the content of Fangohr et al. (2000) with some more details. In
addition, we describe the nearest neighbour look-up and the pre-computation
of the interaction table for infinite lattice summations as can be used in the
simulation software.

• More details and simulation results obtained using the simulation can be found
in:

– Fangohr, de Groot and Cox (2001b) Vortex dynamics in two-dimensional
systems at high driving forces. Physical Review B, 64, 064505 (2001a).

– Fangohr, Cox and de Groot (2001a) Critical transverse forces in weakly
pinned driven vortex systems. Physical Review B, 63, 064501 (2001b).

– Fangohr, Koshelev and Dodgson (2002) Vortex matter in layered supercon-
ductors without josephson coupling: numerical simulations within mean
field approach. cond-mat/0210580 (2002). Submitted to Phys. Rev. B.
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Chapter 1

The vortex state

1.1 Superconductivity

Kamerlingh Onnes found in 1911 that the electrical resistance of Mercury drops below any
measurable value when it was cooled below a critical temperature of Tc = 4.2 K. This effect
was christened “superconductivity” and many more elements and compounds have been found
to become superconducting at sufficiently low temperatures, including the recently discovered
magnesium diboride (Nagamatsu et al., 2001). The critical temperature Tc below which the
superconductivity exists has been increased up to well above 100 K in the late 1980s after the
discovery by Bednorz and Müller (1986) of a new class of cuprate superconductors.

The understanding of conventional type-I superconductors, which expel an external magnetic
field completely, is relatively good. In 1935 London and London proposed equations which
govern the behaviour of microscopic electric and magnetic fields and introduced the characteristic
length λ, which is now called the London penetration depth. Bardeen, Cooper and Schrieffer
(BCS) produced their Nobel prize winning theory of superconductivity in 1957 from which the
London equations can be derived. It states that there is a phonon-mediated attraction between
superconducting electrons. Two electrons with equal but opposite momentum and spin can form
a so-called “Cooper pair”. The spatial extension of such a pair is given by the Pippard coherence
length (1953), and the Cooper pairs are separated from the normal conducting electrons by an
energy gap.

Already in 1950 Ginzburg and Landau published their theory which is based on Landau’s
general theory of phase transitions. They introduced a complex pseudo-wave-function ψ as
an order parameter which measures the “superconducting order” and derived differential equa-
tions which couple ψ and the magnetic vector potential. Ginzburg and Landau introduced
the Ginzburg-Landau coherence length ξ(T ) which, sufficiently far below Tc, is similar to the
temperature independent Pippard coherence length. It has been shown subsequently that the
Ginzburg-Landau theory is a limiting form of a suitably generalised BCS-theory (Gorkov , 1959).
The ratio of the London penetration depth, λ, and the Ginzburg-Landau coherence length, ξ,
defines the Ginzburg-Landau parameter κ = λ/ξ.

The quantitative description of the high-temperature superconductors is based on the phe-
nomenological Ginzburg-Landau theory, Abrikosov’s work on the vortex state (as described in
section 1.2), and Gorkov’s work. It is therefore occasionally referenced as the GLAG-description.
However, a theoretical description of the pairing mechanism giving rise to superconductivity is
still lacking.
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Figure 1.1: Spatial variation of the Cooper pair
density |ψ|2, the magnetic induction B, and the
supercurrent js around the vortex centre. The
magnetic induction drops to zero over the length
scale given by the London penetration depth,
λ, and the superconducting order parameter, ψ,
varies on the length scale ξ.
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Figure 1.2: Different behaviour of magnetisation M (left) and magnetic induction B (right) to
an external applied magnetic field H in type-I and type-II superconductors. In type-II super-
conductors, vortices start penetrating the material at Hc1 and represent B within the sample.
At Hc2 the vortex cores overlap and the external field Hc2 is established as superconductivity
breaks down.

1.2 The vortex state

In 1957 Abrikosov investigated theoretically what would happen if the Ginzburg-Landau pa-
rameter, κ, was larger than 1, in contrast to being much smaller than 1, as it is for classical
pure superconductors. He found that the surface energy of an interface of a superconducting
and a normal region would be negative. It turned out that a sample of such a material being
exposed to a magnetic field (near the upper critical field Hc2) would be subdivided into smaller
and smaller domains of alternating superconducting and non-superconducting regions to reduce
the system’s overall energy. Abrikosov called these materials “type-II” superconductors because
their behaviour differs strongly from the classical type-I superconductors.

It is now established that the normal regions are tube-like flux lines which penetrate a type-
II superconductor in the form of a regular triangular array (in the absence of any disordering
effects). Each of these flux lines, which are also called vortices, carries a magnetic flux quantum
Φ0 = h/2e, with h being Planck’s constant and e the electron charge. Each flux line is surrounded
by a supercurrent screening the enclosed magnetic induction. Figure 1.1 shows the magnetic
induction and the superconducting order parameter in the neighbourhood of a vortex.

Type-I superconductors with κ < 1/
√

2 expel an external magnetic field completely up to a
critical field value Hc at which the superconductivity breaks down, as demonstrated schemat-
ically in figure 1.2 (dotted line). Type-II superconductors show the same behaviour for small
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fields but only up to field strengths Hc1 < Hc. For field strengths between Hc1 and Hc2, the
external field penetrates the bulk in the form of vortices. This regime is called the “vortex
state” or the “mixed state” and it is this situation which has been investigated in this work.
Because of the partial flux penetration, the diamagnetic energy cost of expelling the field is re-
duced and therefore Hc2 can be significantly larger than Hc. This property has made high-field
superconductors possible.

In the mixed state, vortices tend to align in a hexagonal lattice to minimise their energy.
The critical fields Hc1 and Hc2 are functions of the temperature and decrease with increasing

temperature. In figure 1.3 we show the phase diagram of a type-II superconductor as a function
of magnetic field and temperature. At zero temperature, we can estimate Hc1 ≈ 1

κHc and
Hc2 ≈ κHc (Kittel , 1996). For high-temperature-materials, the Ginzburg-Landau parameter is
big (κYBCO ≈ 90 and κBSCCO ≈ 60) and therefore Hc1 is much smaller than shown in figure 1.2
and 1.3.

In this work the regime H # Hc1 is investigated and hence B ≈ µ0H, where µ0 is the
free-space permeability. For convenience both the magnetic field H and the magnetic induction
B are referred to as magnetic fields.

1.3 Interactions in the vortex state

1.3.1 Lorentz force and flux flow

In the presence of a transport current, a Lorentz force fL per unit length, proportional to the
current density j acts on the vortices and pushes them in a direction perpendicular to the
transport current and perpendicular to the orientation of the magnetic field

fL = j ×Φ0, (1.1)

where Φ0 is a vector pointing in the direction of the magnetic field with a magnitude of the
magnetic flux quantum Φ0.

For an ideal homogeneous material, Bardeen and Stephen (1965) showed that the resulting
motion of vortices with velocity v is resisted by a viscous drag force fvisc = −ηvolumev per unit
volume with a viscosity coefficient ηvolume per unit volume given by

ηvolume = B2/ρff and ρff ≈ ρnB/Bc2, (1.2)

with ρff the flux flow resistivity, ρn the normal state resistivity of the material, B the magnetic
induction, and Bc2 the upper critical value of B at which superconductivity breaks down. Equa-
tion (1.2) has been confirmed in experiments, for example by Kunchur et al. (1993). The normal

9



|!|2|!|2

b)a)
rr

Imperfection
VortexImperfection Vortex

Figure 1.4: a) Schematic plot of the density of Cooper pairs in the neighbourhood of an imper-
fection in the crystal structure and a vortex. b) If the vortex is placed into the imperfection
then the system’s energy is reduced.

state resistivity enters the expression because the moving vortices induce local electric fields (due
to the magnetic induction changing with time) which act on the unpaired non-superconducting
electrons. There is another contribution coming from the change of the Cooper pair density on
a time scale comparable to the relaxation time of the Cooper pair system (Buckel , 1993, p.181).

If vortices move, they dissipate energy which is taken from the transport current. This
manifests itself as a voltage across the material, and in such circumstances the material has a
resistance.

1.3.2 Pinning

In practice, real materials always have inhomogeneities, which tend to “pin” vortices to the
atomic crystal structure. Therefore, for currents below a critical current density, the vortices
are pinned and do not respond to a small Lorentz force, so no resistance is measured.

Imperfections in the crystal structure influence the motion of vortices via scattering or the
suppression of the superconducting order parameter (Blatter et al., 1994, p.1143). The latter
mechanism can be explained qualitatively in terms of the energy contribution of the condensa-
tion energy to the superconducting state and is illustrated in figure 1.4. Imperfections in the
periodicity of the atomic structure locally inhibit superconductivity. In these areas, there is no
negative contribution from the condensation energy to the total energy of the superconducting
state. The net reduction in system energy of a vortex in a type-II superconductor is positive,
and the core of the vortex is not superconducting. It is therefore energetically advantageous if
a vortex is located in an imperfection. Any attempt to move it from there to another position
would increase the system energy. For forces which are not too large the vortex is pinned.

There are different kinds of pinning objects in high-temperature superconductors such as
YBa2Cu3O7−δ (YBCO). On the atomic scale, there are oxygen vacancies which locally suppress
the superconducting order parameter and appear spatially uncorrelated. On the other hand,
there are correlated defects such as twin boundaries due to the orthorhombic structure of YBCO
which separate domains in which the crystal a- and b-directions interchange roles. These twin
planes and other extended defects such as grain boundaries, stacking faults, screw dislocations,
and sample surfaces are larger pinning objects and can pin more than one vortex strongly.
Finally, using ionising radiation, columnar defects can be created which can also be relatively
strong pinning centres if a vortex aligns with the defect.

1.3.3 Vortex-vortex interactions

In addition to the Lorentz force and the pinning interaction a third force acting on vortices is
their mutual repulsion.
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All high-temperature superconductors known to date, such as YBCO and
Bi2Sr2CaCu2O8 (BSCCO), are layered materials, i.e. superconducting CuO2 layers alternate
with less superconducting layers. A vortex line can be understood as a coupled line of two-
dimensional “pancake” vortices which occupy the CuO2 layers (Artemenko and Kruglov , 1990,
Feigel’man et al., 1990, Buzdin and Feinberg , 1990, Clem, 1991). The following is a short sum-
mary of the different kinds of electromagnetic interaction between pancake vortices in single and
stacked two-dimensional layers (Clem, 1991, Blatter et al., 1994, pp.1277, Clem, 1998).

1.3.3.1 Two pancake vortices in an isolated superconducting thin film

The energy U(r) of two pancake vortices separated by a distance r =
√

x2 + y2 in a thin film
of thickness d is given by Pearl’s solution (Pearl , 1964)

U(r) =
Φ2

0d

2πµ0λ2
s

(
H0

( r

Λ

)
− Y0

( r

Λ

))
(1.3)

where λs ≈ 1000Å is the London bulk penetration depth, and Λ = 2λ2
s/d ≈ 3 · 105Å is the two-

dimensional thin film screening length. The quoted numbers are characteristic of an YBCO
layer and are given to provide a feel for the order of magnitude of the different lengths. H0 and
Y0 are the Struve function and the Bessel function of the second kind.

The bulk penetration depth, λs relates to the in-plane penetration depth of a thin layer,
λab ≈ 1400Å, via λs = λab

√
d/s, where d ≈ 6Å is the layer thickness and s ≈ 12Å is the layer

spacing. We re-write Λ = 2λ2
ab/s, and introduce

ε0 =
Φ2

0

4πµ0λ2
ab

, (1.4)

with µ0 = 4π · 10−7 Vs
Am being the vacuum permeability and Φ0 the magnetic flux quantum.

Eventually, we can express the interaction (1.3) strength in terms of ε0

U(r) = 2ε0s
(
H0

( r

Λ

)
− Y0

( r

Λ

))
. (1.5)

For small and large r, the following approximations hold:

U(r) ∝ − ln
(

r
Λ

)
: r ' Λ (1.6)

U(r) ∝ 1
r : r # Λ. (1.7)

1.3.3.2 Two pancake vortices in one layer in a system of stacked thin films

Due to induced screening currents in the layers above and below the “central” layer (which holds
one pancake vortex), the resulting current distributions are different from those in the isolated
thin film. For the repulsive force between two vortices in one layer in an infinite system of
stacked layers it has been shown (Clem, 1991, eqn. 27) that the interaction force F (r) is given
by

F (r) = 2ε0s
1
r

[
1 − λab

Λ

(
1 − exp

(
− r

λab

))]
. (1.8)

Since λab/Λ ≈ 10−3, this is effectively

Fr(r) =
2ε0s
r

. (1.9)
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Figure 1.5: A stack of aligned two-dimensional vortex pancakes.

This corresponds to a potential
U(r) = −2ε0s ln (r) (1.10)

which is logarithmic at all distances, not just for r ' Λ as in the isolated thin film (1.6).
For the electromagnetic interaction of two pancake vortices in different layers an attractive

force is found that is weaker than the in-layer repulsion by a factor of approximately λab/Λ. We
consider this in detail for the studies of three-dimensional pancake systems in Fangohr et al.
(2002).

1.3.3.3 Two stacks of aligned pancake vortices

For aligned stacks of pancake vortices where the magnetic field is perpendicular to the super-
conducting planes as shown in figure 1.5, the interaction energy per unit length between two
such stacks is found to be

U(r) = 2ε0K0

(
r

λab

)
. (1.11)

K0 is the modified Bessel function of the second kind. Equation (1.11) shows the same r-
dependence as the result derived from the London theory for the interaction energy of two
vortex lines in a continuous medium (Tinkham, 1996, p. 154). In the latter result λab is given
by λs, the isotropic London penetration depth. K0(r/λab) can be approximated with

K0

(
r

λab

)
=






√
πλ
2r exp

(
− r

λab

)
: r → ∞

ln
(
λab
r

)
+ 0.12 : r ' λ.

(1.12)

In contrast to equation (1.10) the interaction energy drops off exponentially for large distances.
This is due to the weak attraction of pancakes in different layers.

In the remainder of this work, we are dealing with λab rather than λs. We therefore use
λ ≡ λab to shorten our notation.

The other interaction which is important for vortex pancakes is the Josephson coupling of
pancake vortices between different layers. This contribution has to be considered for a complete
treatment of layered superconductors (Clem, 1991). A theoretical model is given by Lawrence
and Doniach (1971) which is a discrete version of the Ginzburg-Landau theory. This has been
further investigated by Bulaevskii et al. (1992) who found that three- and four-body interac-
tions between pancakes have to be considered. However, the electromagnetic interactions alone
provide highly complex physics. Restricting the model to eletromagnetic interactions is justified
in the quasi-two dimensional case of rigid vortices in thin-films and for individual layers of pan-
cakes, and it is a fair first approximation for simulations of three-dimensional loosely coupled
materials such as BSCCO Fangohr et al. (2002).
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1.3.4 Summary

The vortex state is determined by the relative strengths of the following energies:

• the vortex-vortex interaction which favours a hexagonal lattice,

• the vortex-pinning energy which (generally) introduces disorder and

• the thermal energy which destabilises the lattice further.

The Lorentz force drives the system over the pinning energy surface and this results in complex
vortex dynamics.
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Chapter 2

The Simulation

This chapter describes some parts of the computer simulation. The central idea is to represent
vortices as massless classical particles that are free to move in a two-dimensional area. Those
particles can be identified with vortex-lines when modelling thin films in which vortices are
“stiff”. To model three-dimensional systems we associate these particles with pancake-vortices,
and use a mean field approach (Fangohr et al., 2002) account for interactions in the third
dimension.

In section 2.1, an overview of techniques to simulate many-body problems is given and in
section 2.2 these techniques are related to the vortex state, followed by a detailed description of
the simulation software. This includes the derivation of the central equations of motion in section
2.3 and methods to solve them (section 2.5). In sections 2.6 we describe the boundary conditions
and section 2.7 details our choice of simulation units. Section 2.8 assesses the applicability of
the model, and in section 2.9 the observables to monitor the simulation are introduced. Section
2.10 concentrates on practical aspects of the usage of the simulation software such as the user
interface, and hardware and software requirements. A summary is provided in section 2.11.

2.1 Computer simulations of many-body systems

Computer simulations have proved to be a valuable tool for problems that cannot be solved ana-
lytically. Numerical solutions are particularly useful for providing results for specific parameters
which are not at all obtainable otherwise.

Following Haile (1997), the simulations used to study many-particle problems can be ordered
from stochastic simulations to deterministic models as shown in figure 2.1 on the next page.

Monte Carlo simulations are adopted from general Monte Carlo methods for solving high-
dimensional integrals. In Monte Carlo simulations the integrals of interest are the statistical
mechanics ensemble averages for a property f(rN ), for example in the canonical ensemble:

< f >=

∫
. . .

∫
dr1 dr2 . . . drN f

(
rN

)
exp

(
−U(rN )

kBT

)

∫
. . .

∫
dr1 dr2 . . . drN exp

(
−U(rN )

kBT

) . (2.1)

This is the standard case where the number of particles N , the temperature T , and the
volume V of the simulation are given. The vector rN has Nd components when each particle’s
position ri has d components, and U(rN ) is the energy of the system. Since Monte Carlo methods
are generally not well suited to study dynamical quantities, the integration in phase space over
the generalised momenta p1, . . . ,pN has been carried out already in equation (2.1).

14



Stochastic

Deterministic

Hybrid Methods

Langevin Dynamics
Molecular Dynamics

Force Biased Monte!Carlo
Metropolis Monte!Carlo Figure 2.1: Monte Carlo simulations work

stochastically and molecular dynamics
simulations work deterministically. There
are various techniques that combine both
methods.

Taking the Boltzmann factor exp
(
−U(rN )

kBT

)
into account, it was suggested by Metropolis

et al. (1953) to consider only configurations which contribute most to the integral. This is
known as importance sampling for general Monte Carlo methods and in the context of Monte
Carlo simulations it is referred to as the “Metropolis algorithm”.

Particle positions are altered by trial moves which are conditionally accepted. Each new
configuration depends only on the previous one and is achieved by moving one particle a small
distance to a new position which is determined by a random number generator. The configura-
tions encountered in the run of a simulation are obtained stochastically.

Molecular dynamics methods can be divided into equilibrium and non-equilibrium dynamics.
Equilibrium dynamics are usually applied in the micro-canonical ensemble to an isolated system
with energy E, containing a fixed number of particles N , in a fixed volume V . However,
there exist methods to fix the simulated temperature, which allows investigation of canonical
ensembles (for example Rapaport , 1995). In non-equilibrium molecular dynamics, an external
force is applied to the system to establish non-equilibrium situations of interest. The particles’
positions are obtained by integrating Newton’s equation of motion. For a set of N particles with
positions ri, the set of equations to solve reads1

mir̈i = Fi (r1,...,N , ṙ1,...,N , t) i = 1, . . . ,N, (2.2)

where mi is the mass of particle i, and Fi is the total force acting on i. The velocity of particle
i is ṙi and r̈i is its acceleration.

To compute a system property f(rN , ṙN ), one takes the time average of that property

< f >= lim
t→∞

1
t

t0+t∫

t0

dt′ f
(
rN (t′), ṙN (t′)

)
. (2.3)

In contrast to the Monte Carlo simulations, it is here easily possible to investigate dynamical
quantities such as transport coefficients and time correlation functions. According to the ergod-
icity hypothesis the ensemble average in equation (2.1) and the time average in equation (2.3)
should be the same.

Force biased Monte Carlo methods compute the force exerted from all other particles on
particle i and then move that particle i in this direction. This reduces the number of trial moves
required, but each sweep is computationally more expensive.

1The following convention is used: the dot notation represents the time derivative: ṙ = dr
dt and r̈ = d2r

dt2
.
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Hybrid methods are Monte Carlo simulations that use a sequence of molecular dynamics
steps to generate new random configurations. This ensures that very different areas in phase
space are covered and reduces the number of Monte Carlo sweeps required to study equilibrium
properties of the system.

Langevin dynamics were developed to investigate Brownian Motion (Lenk and Gellert , 1989,
p.537). One studies particles immersed in a continuum, for example a fluid. Instead of consid-
ering all microscopic interactions of all particles establishing the fluid, one concentrates on one
particle and its interactions with the continuum. The force exerted on the particle by the fluid
is broken into two parts: an average viscous force −ηṙi and a random force χ(t) whose time
average is zero (Kubo et al., 1985, p.14). The equation of motion for particle i is

mir̈i = −ηṙi + χi + F′
i, (2.4)

where F′
i represents all forces not covered in the other two terms. The macroscopic frictional

force represents an averaged value of many microscopic interactions. In cases where inertial
effects are small, the mass mi of the particles can be set to zero. That reduces the system
of differential equations of second order in (2.4) to a system of first order equations which are
occasionally referred to as the “overdamped” Langevin equations of motion because the absence
of the inertial term causes the motion to be overdamped.

2.2 Methods to simulate the vortex state

The most direct method to investigate the vortex state is to solve the (time-dependent) Ginzburg-
Landau differential equations numerically to obtain solutions for the complex valued order pa-
rameter ψ and the magnetic vector potential. The set of coupled non-linear partial differential
equations can be solved on a discrete grid, as demonstrated for example by Braun et al. (1996),
Gropp et al. (1996) and Aranson and Vinokur (1998). On the one hand this approach does
not simplify the physical situation, but on the other hand it is computationally very demanding
since it requires many grid points to resolve even a single vortex.

Another starting point is to treat vortices as structureless point- or string-like objects. Each
of the areas in which the superconducting order parameter ψ drops to zero is mapped to such
an object, which is then considered as being a classical particle. To compute the interactions
between these classical particles one uses effective interaction potentials (for example Clem,
1991, Bulaevskii et al., 1992). The price which has to be paid for decreasing the computational
complexity is that the small length scale ξ is lost and phenomena like pinning, vortex-anti-vortex
creation or flux cutting do not come intrinsically with these models, but have to be implemented
by other means. To study the statics of the vortex state, Monte Carlo simulations can be used
(for example Täuber and Nelson, 1995, Yates et al., 1995, Ryu and Stroud , 1996), whereas to
study the dynamics, Langevin dynamics methods are required (for example Brass et al., 1989,
Koshelev and Vinokur , 1994, Grønbech-Jensen et al., 1996, Groth et al., 1996, Moon et al., 1996,
Ryu et al., 1996, Spencer and Jensen, 1997, Olson et al., 1998a, Wilkin and Jensen, 1997b,a,
van Otterlo et al., 1998, Kohandel and Kardar , 1999). Here, we follow this approach and use
Langevin dynamics to study the static and dynamic behaviour of vortices.

Parts of this work are applicable to particle simulations in general and not limited to vortex
state simulations. Therefore, we frequently use the term “particle” instead of “vortex”.

In addition to the methods described above, there are other approaches to simulate the
physics of the vortex state. These range from xy-models (for example Li and Teitel , 1994, Nguyen
and Sudbø , 1999) to the solving of a coarse grained equation of motion for the displacement field
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(Aranson et al., 1998), investigating a disordered array of Josephson junctions (for example
Domı́nguez , 1999), mapping vortex lines to bosons (for example Nordborg and Blatter , 1997)
and combination of methods, such as the London-Langevin method coupled to solving the time-
dependent Ginzburg-Landau equation (Bou-Diab et al., 2001).

2.3 Equation of motion

The terms in the equation of motion that influence the behaviour of each vortex are the viscous
force and a stochastic term from the Langevin equation (2.4), the vortex-vortex interaction, the
Lorentz force, and pinning forces. Each of these will be presented in detail in the following
subsections.

2.3.1 Overdamped Langevin dynamics

The Langevin dynamics as introduced in section 2.1 form the physical basis of this simulation.
The flux motion is strongly overdamped since the viscous force is much greater than any possible
inertial forces (Brandt , 1995, Sec. 5.2) and the vortex mass can be ignored. The mass term mi

on the left-hand side of equation (2.4) is set to zero and the remaining Langevin equation for
vortex i reads (with χi = Fthermal

i ):

0 = −ηṙi(t) + Fvv−interaction
i (r1(t), . . . , rN (t)) + Fdrive(t) + Fthermal

i (t) + Fpinning(ri(t)). (2.5)

The terms represent from left to right: the viscosity term, the forces from the vortex-vortex inter-
action, the drive or Lorentz force acting on all vortices equally, the noise term which introduces
temperature, and the pinning force which depends on the position of the vortex.

2.3.2 Viscosity

The viscosity, η, of the vortex state is related to the Bardeen-Stephen expression for flux-flow
resistivity in a homogeneous material (see section 1.3.1 on page 9). The viscous drag coefficient
per volume is

ηvolume ≈
BBc2

ρn
. (2.6)

Considering that the magnetic induction, B, is represented by N vortices, each carrying a flux
quantum Φ0 over the area A, leads to B = NΦ0/A. Equation (2.6) can be converted into the
viscosity per vortex per unit length η1

length = ηvolume
N A ≈ Φ0Bc2

ρn
. The viscosity η in equation (2.5)

is given by the viscosity per (pancake) vortex which for a (pancake) vortex of length s is

η = η1
lengths =

Φ0Bc2

ρn
s. (2.7)

2.3.3 Vortex-vortex interaction

The energy U and force F per unit length of interacting stiff vortex lines separated by a distance
r is (see section 1.3.3)

Uline(r) = 2ε0K0

( r

λ

)
⇐⇒ Fline(r) =

2ε0
λ

K1

( r

λ

)
(2.8)

and the interaction energy and force between pancakes in the same layer is effectively (Clem,
1991)

Upancake(r) = 2ε0s ln
(
λ

r

)
⇐⇒ Fpancake(r) =

2sε0
λ

1
r

(2.9)
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where ε0 = Φ0
4πµ0λ2 , λ is the London penetration depth, and s is the layer separation.

For simulations of isolated thin-films, the vortex-vortex interaction is given by Pearl’s solution
(1.3).

We have implemented all three relevant interactions ( ln,K0 and Pearl’s solution), and the
interaction potential can be chosen in the configuration file (section 2.10.2.1). We use the smooth
cut-off as described in chapter 3 to overcome problems resulting from truncating the interaction.

Using, for example the logarithmic interaction potential (2.9), the vortex-vortex interaction
force Fvv

ij felt by pancake i from pancake j at positions ri and rj, respectively, reads

Fvv
ij (ri − rj) = 2ε0s

1
|ri − rj|

ri − rj

|ri − rj|
= 2ε0s

ri − rj

|ri − rj|2
, i -= j. (2.10)

Antisymmetry of Fvv can be used to optimise its computation. The total force acting on
pancake i is given by

Fvv−interaction
i =

N∑

j=1
j !=i

Fvv
ij (ri − rj). (2.11)

For practical computation, the chosen boundary conditions and a cut-off must be taken into
account, as explained in section 2.6.

2.3.4 Lorentz force

The Lorentz force per unit length fL = j×Φ0 acts equally on every vortex (assuming a homoge-
neous current density). Symbols are as in equation (1.1). The Lorentz force acting on vortices
of length s is given by

Fdrive(t) = s j ×Φ0. (2.12)

2.3.5 Temperature

The thermal motion of a particle i in equilibrium overdamped Langevin dynamics (section 2.3.1)
described by

0 = −ηṙi + ζi(t) (2.13)

is given by a stochastic noise term which, for clarity, is here called ζi(t) to distinguish it from
χi(t) which is used in the simulation. ζi(t) must be normally distributed and have the properties
(Chaikin and Lubensky, 1995, p.381)

< ζi(t) > = 0 (2.14)

and
< ζi(t)ζj(t′) > = 2ηkBTδijδ(t − t′) (2.15)

where η is the viscosity as in equation (2.13), kB the Boltzmann number and T the effective
temperature in Kelvin. The angular brackets indicate time-averages in the context of Langevin
simulations. Thus, the average of the force from the noise term acting on each particle is zero,
and it is neither correlated in time, nor for different particles.

The noise term, χ, chosen in the simulation is

χ(t) = σΨ (2.16)
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where Ψ(t) is normally distributed with variance 1.0 with σ as a measure of temperature. It
follows that

< χ2 > = σ2. (2.17)

To relate σ to the effective temperature, T , one has to consider that the differential equation
of motion is solved discretised in time. This means that high-frequency components of the
stochastic term, ζ(t), are ignored and that χ(n∆t), n ∈ IN, represents the average of ζ(t) over
a time step ∆t. Therefore, one has to consider the correlations of the impulses rather than the
forces ζ and χ:

〈∫ t+∆t

t

∫ t′+∆t

t′
ζ(t)ζ(t′)dtdt′

〉
=

∫ t+∆t

t

∫ t′+∆t

t′
< ζ(t)ζ(t′) > dtdt′

(2.15)
=

∫ t+∆t

t

∫ t′+∆t

t′
2ηkBTδ(t − t′)dtdt′

= 2ηkBT

∫ t+∆t

t
dt = 2ηkBT∆t (2.18)

and for χ we obtain
〈∫ t+∆t

t

∫ t′+∆t
t′ χ2dtdt′

〉
(2.17)
= σ2(∆t)2. Now the last two expressions can

be equated to relate the effective temperature, T , to the temperature parameter, σ, in the
simulation:

T =
∆t

2ηkB
σ2. (2.19)

We will later express forces in multiples of f0
(2.29)
= 2ε0s/Lscale and the time-step ∆t in units of

tscale
(2.32)
= Lscaleη/f0 and denote dimensionless parameters with a tilde (section 2.7). Eventually

we use σ =
√

T̃ f0 where T̃ is the dimensionless temperature parameter in the simulation, and
relates to the real temperature, T , via

T =
∆tf2

0

2ηkB
T̃ =

tscale∆̃tf2
0

2ηkB
T̃

(2.32)
=

∆̃tLscalef0

2kB
T̃

(2.29)
=

ε0s∆̃t

kB
T̃ . (2.20)

2.3.6 Pinning

The values of the pinning potential are stored on a fine two-dimensional grid, and we interpolate
to obtain potential values between the grid-points.

2.3.6.1 Pinning interpolation methods

In this section we describe technical details of this interpolation, and have chosen a point like
pin on a very coarse grid for demonstration purposes.

To compute potential values between the grid-points, we use either a bi-linear or a bi-cubic
interpolation method. The bi-cubic method results in a smoother potential. We demonstrate
this in figure 2.2.

In figure 2.3 we show a one-dimensional cut through a pinning potential. On the left plot, we
demonstrate the difference between the two interpolation techniques for an even coarser pinning
potential. It can be seen that the cubic method results in a smooth line, but overshoots. The
right plot shows a problem that can occur from using linear interpolation: a trapped particle
may oscillate artificially around its equilibrium position.

The overshooting of the cubic interpolation is due to the discontinuity of the first derivative
at x = ±0.5, and this problem is unlikely to happen for realistic pinning potentials: the vortex
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Figure 2.2: Demonstration of pinning potential interpolation. Left: Original pinning data as
stored in file, showing − exp(−r2). For demonstration purposes we have chosen the mesh to be
very coarse in order to better visualise the interpolation process. For intermediate positions we
interpolate the pinning data. Middle: Bi-linear interpolation. Right: Bi-cubic interpolation.
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Figure 2.3: Left: Comparison of linear interpolation (dashed line) and cubic interpolation (solid
line) between the defined potential values (circles). The cubic interpolation results in a smooth
minimum at x = 0, but overshoots, for example, at 0.5 < x < 1 thus creating an artifical barrier.
Right: Bi-linear interpolation of the pinning potential. Artificial behaviour can occur on a small
scale: Suppose a particle drops into a pinning well, which is as crudely approximated as shown
here. In the absence of other forces it will oscillate around the minimum in the pinning potential.

core smears pinning over a length scale ξ and the pinning potential should reflect this and there-
fore vary smoothly. Therefore, the cubic interpolation is the safe method to describe a smoothly
varying pinning potential, but for sufficiently fine pinning meshes, the linear interpolation pro-
duces the same results.

2.3.6.2 Different pinning types

Apart from using the well known-point like pinning (top in figure 2.5), one can employ a random
pinning potential that varies smoothly on a length scale of λ/25, which is of the order of the
coherence length ξ. This is a representation of random pinning on the atomic length scale (for
example due to oxygen vacancies or small clusters of oxygen vacancies) since the vortex cores
effectively smooth the pinning potential over a length scale of the core diameter 2ξ. Figure 2.4
(a) demonstrates the construction of the pinning potential in one dimension. Figure 2.4 (b)
shows a part of the pinning structure used for the two dimensional system. The root mean
square value of the corresponding pinning forces is denoted by F vp

rms.
This choice of the pinning potential is more realistic for high-quality single crystal samples
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Figure 2.4: A sample pinning potential.
Distances are given in multiples of the vor-
tex lattice spacing, a0. (a) Demonstration
of construction of the pinning potential in
one dimension: firstly, we assign random
pinning energies at discrete sites (shown as
open circles) with spacing w. Secondly, we
interpolate between those sites using cubic
splines to obtain an effectively continuous
pinning potential. This results in a ran-
dom pinning potential with a short-range
correlator V (r)V (r′) = g(r − r′) of range
w. We follow an analogous procedure in
two dimensions. (b) A part of a pinning
potential as used in the simulations. The
seven black cylinders indicate vortex lines
separated by a0 to demonstrate the length
scale.

Figure 2.5: Comparison of different pinning potentials. Top: Point-like pinning centres as
employed by most other simulations of the vortex state. Parameters taken from Olson et al.
(1998b), Olson and Reichhardt (2000). Bottom: Smoothly varying pinning potential as used in
this work. Both plots show an area which is occupied by ≈ 90 vortices.
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than the pinning of few, relatively strong point-like pinning centres. We demonstrate the different
shapes of the pinning potential in figure 2.5.

2.3.6.3 Computing the pinning force, and measuring pinning strength

To obtain the force Fpinning(ri(t)) for vortex i at position ri(t) one needs the negative gradient
of the pinning potential which we compute numerically. We measure the strength of a pinning
potential by the root-mean-square value of its force

F vp
rms =

(∫
d2r |Fvp(r)|2

) 1
2

. (2.21)

2.4 Random pinning

2.4.1 The complete equation of motion

Having considered all the forces contributing to the equation of motion, one obtains the following
system of N two-dimensional first order ordinary differential equations which describes the
motion of vortex pancakes with time in one layer:

ηṙi(t) = Fvv−interaction
i (r1(t), . . . , rN (t)) + Fdrive(t) + Fthermal

i (t) + Fpinning(ri(t))

= 2ε0s
N∑

j=1
j !=i

ri(t) − rj(t)
|ri(t) − rj(t)|2

+ s · j(t) ×Φ0 + Fthermal
i (t) + Fpinning(ri(t))

i = 1, . . . , N and (r1(t0), r2(t0), . . . , rN (t0)) = (r0
1, r

0
2, . . . , r

0
N )

(2.22)

The constants η and ε0 are defined in equations (2.7) and (1.4), respectively, s is the length of a
vortex, j is the current density of the transport current, Φ0 is the flux quantum directed along
the magnetic field perpendicular to the layer, and the r0

i are the initial positions of the pancakes
at time t = t0.

2.5 Solving the equation of motion

The problem to be solved as given in equation (2.22) is an initial value problem for a coupled
set of 2N ordinary first order differential equations. Each equation can be written as

dx

dt
(t) = f(t, x) with x(t0) = x0. (2.23)

Integrating equation (2.23) from time tn to time tn+1 yields

x(tn+1) = x(tn) +

tn+1∫

tn

f(t, x(t)) dt. (2.24)

This converts the problem into solving an integral. Integration methods with varying step
size ∆t = tn+1 − tn cannot be used, because a changing step size would change the effective
temperature, as visible in equation (2.19).

In principle, there are a variety of methods available to integrate equation (2.24). Most of
them can quickly be dismissed for the reason that the most expensive part of the computation is
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the evaluation of the right-hand side of equation (2.24). Therefore, any method requiring more
than one such calculation per time step is wasteful, unless it can deliver a proportionate increase
in the step size ∆t. However, due to the strongly repulsive force for vortices approaching each
other closely, there is an effective upper bound for ∆t (Rapaport , 1995, p.57).

For this reason, in molecular dynamics simulations only “predictor-corrector” methods or
low order “leap-frog” methods play important roles (Haile, 1997, p.158). Predictor-corrector
methods use information from several previous time steps to approximate the function to inte-
grate by a polynomial, but cannot be used in Langevin simulations as the noise term, Fthermal,
in (2.22) introduces discontinuities in the right-hand side of (2.24) and the predictor-corrector
method relies on f(t, x(t)) being a smooth and continuous function. The typical leap-frog in-
tegration employs a simple Euler-integration step for both the velocity and the positions, but
computes velocities and positions on a staggered grid in time. The leap-frog method is very
stable.

We use a leap-frog type integration scheme which is equivalent to Euler’s method since
we have no second order derivative in (2.22). For zero-temperature runs, predictor-corrector
methods can be employed, but one has to reduce the time step size in comparison to the leap-
frog method to make them stable, and the gain in accuracy is not worth the effort: Rapaport
(1995, p.57) states that a high degree of accuracy in the trajectories is neither a realistic nor a
practical goal, and this is particularly true for differential equations with a stochastic term. It
is more important that time- and space-dependent correlations can be reproduced. For finite
temperatures in our simulations, predictor-corrector methods are intrinsically unstable as they
are based on the assumption that the right-hand-side of the differential equation (2.22) can be
described by a polynomial. In particular, this requires continuity which is not given with the
randomly varying Langevin noise term.

2.6 Boundary conditions

One simple form of boundary conditions are “hard” boundary conditions: we confine the vortices
inside the simulation cell and do not to allow them to cross the boundary. Results of such
a run starting from a hexagonal vortex distribution are shown in figure 2.6. The hexagonal
configuration is unstable, and the majority of vortices moves to the borders because there is no
repulsion from outside the simulation cell.

We are generally interested in the case where the vortex density stays approximately con-
stant. In particular, we would like the hexagonal configuration to be the ground state and
therefore stable. This is easily achieved by the conventional approach of using periodic bound-
ary conditions, (next section 2.6.1).

2.6.1 Periodic boundary conditions

The standard approach in particle simulations in order to avoid the influence of surfaces on the
system is to use periodic boundary conditions (for example Rapaport , 1995, p.16). A system
of infinite size is simulated by tiling space with an infinite array of identical copies of the
finite simulation region, as indicated in figure 2.7 for only eight copies. There are two different
approaches how to deal with particle-particle interactions across the border of the simulation
cell:

• The cut-off method cuts off the interaction at some distance shorter than half the length
of the simulation cell. This avoids self-interaction of particles. For long-range forces this
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Figure 2.6: Left: Initial hexagonal vortex configuration. Right: Final configuration after relax-
ation from configuration shown on the left, using hard boundaries. Due to the strong repulsion,
vortices gather at the boundary and the vortex distribution is spatially inhomogeneous. Note,
that the apparent thick line around the simulation cell is in fact composed of overlapping circles
which represent the vortices at the system’s boundary.
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Figure 2.7: Periodic boundary conditions within
the planes. The primary cell is surrounded by
eight image cells (A to H) of itself. One vortex
and all its mirror images are drawn in the lower
right corner of the simulation area. Also, the
cut-off range for the computation of the interac-
tion force of this vortex with all other vortices
is indicated by the dotted circle.

approach can give misleading results (see chapter 3).

• The infinite lattice summation takes into account the interaction of the particles with
all particles in all infinite repeats of the simulation cell in order to evaluate forces and
energies. Every particle interacts with all its mirror images which is only feasible if the
infinite double sum can be simplified. This method can impose an artificial periodicity
onto the system, and is usually computationally more complex than the cut-off approach.

Both methods will be discussed in detail in chapter 3, where we demonstrate that long-
range potentials have to be cut-off smoothly, and where we derive a fast method to compute an
infinite lattice summation for particles interaction with the Bessel function potential K0(r). In
addition, we have implemented the infinite lattice summation for logarithmic interaction which
was developed by Grønbech-Jensen in 1996.
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In principle, any space-filling convex region can be used as the shape of the primary cell. We
have chosen a rectangular simulation cell with lengths Lx and Ly being commensurate with a
hexagonal lattice to avoid frustration of the system. Other shapes can be used, but provide no
advantage (section 3.3).

2.7 Simulation units

It is advisable to scale variables in the simulation such that resulting numbers are of the order
of unity: firstly, numerical overflow and underflow have to be avoided. Secondly, scaling can
simplify tracking down errors because humans are better in working with number of the order
of unity rather than big or small numbers that have to be expressed with exponents. Finally,
universal parameters can be identified: it may turn out (by investigating the equations) that
some parameters of the problem are irrelevant for the computation, and that numerical results
can be scaled afterwards with these parameters.

We label quantities expressed in dimensionless simulation units with a tilde, and introduce
scaling factors Lscale for length and tscale for time such that

r = Lscaler̃ and t = tscalet̃. (2.25)

We express equation (2.22) schematically as

dri

dt
= vi =

1
η
(Fvv−interaction

i + Fpinning
i + Fthermal

i + Fdrive) (2.26)

with (rij representing the displacement of vortex j from vortex i, and rij = |rij|)

Fvv−interaction
i

(2.11)
=

∑

j %=i

Fvv
ij (rij)

(2.10)
=

∑

j %=i

2ε0s
1
rij

rij

rij
. (2.27)

We introduce the scaling length Lscale into Fvv
ij given in (2.10)

Fvv
ij (rij) = 2ε0s

1
rij

rij

rij
=

2ε0s
Lscale

1
r̃ij

r̃ij

r̃ij
≡ f0r̃ij

r̃ij

r̃ij
= f0F̃vv

ij (r̃ij) (2.28)

which defines our unit of force, f0, as the repulsion two vortices experience when they are
separated by Lscale:

f0 = |Fvv
ij (Lscale)| =

2ε0s
Lscale

(1.4)
=

Φ2
0s

2πµ0λ2Lscale
. (2.29)

Using

vi =
dri

dt
=

Lscale

tscale

dr̃i

dt̃
=

Lscale

tscale
ṽi (2.30)

we rewrite (2.26) as

dr̃i

dt̃
= ṽi =

tscale
Lscale

f0

η

(
F̃vv−interaction

i + F̃pinning
i + F̃thermal

i + F̃drive
)

. (2.31)

We fix the time-scale tscale by requiring

tscale
Lscale

f0

η
= 1 ⇐⇒ tscale =

Lscaleη

f0
. (2.32)

We choose
Lscale = λ (2.33)
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parameter symbol comment approx. value

YBCO:

anisotropy Γa 5 - 7

penetration depth (parallel to layers) λ 1400Å

coherence length ξ 15Å

layer spacing s 12Å

upper critical field Bc2 at T = 90K 6T

superconductivity transition Tc at B = 0T 93K

normal state resistivity ρn 10−6Ωm

pancake viscosity (2.7) η 1.4 · 10−17kg/s

BSCCO:

anisotropy Γa 50-200

penetration depth parallel to layers λ 1400 − 2000Å

coherence length ξ 20 − 40Å

layer spacing s 15Å

superconductivity transition Tc at B = 0T 110K

Other entities:

Planck’s constant h 2π! 6.6 · 10−34Js

electron charge e 1.6 · 10−19C

flux quantum Φ0
h
2e 2.1 · 10−15Tm2

vacuum permeability µ0 4π10−7 Vs
Am

vortex lattice spacing a0 a0 =
√

2Φ0√
3B

at B = 1T:

a0 ≈ 500Å

Table 2.1: Typical values for YBa2Cu3O7−δ and Bi2Sr2CaCu2O8 compounds (Blatter et al.,
1994, Tinkham, 1996, Gordeev , 2000) and some physical constants.
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name relation factor typical value (YBCO)

Scaling factors

length (2.33) r = Lscaler̃ Lscale = λ 1400Å

time (2.32) t = tscalet̃ tscale = Lscaleη
f0

9.1 · 10−12s

velocity v = Lscale
tscale

ṽ Lscale
tscale

= f0
η 1.5 · 104m/s

force (2.29) F = f0F̃ f0 = 2ε0s
λ 2.2 · 10−13N

energy E = e0Ẽ e0 = Lscalef0 = 2εos 3 · 10−20Nm ≈ 0.2eV

temperature (2.20) T = T0T̃ T0 = ∆tf2
0

2ηkB
= ε0sf∆t

kB
5.6K

Gamma: Γ ≡ kBT
2ε0s Γ = Γ0

T̃
Γ0 = 2

f∆t
400

Other factors

ε0 (1.4) ε0 = Φ2
0

4πµ0λ2 1.3 · 10−11N

time step ∆̃t 0.005

Table 2.2: Typical values for simulation scaling factors using physical parameters given in ta-
ble 2.1, and some other factors used. See equation 1 in Fangohr et al. (2002) for the definition
and use of Γ.

but any length of the order of the vortex-spacing would suffice. We thus get a dimensionless
equation of motion in which all terms are of the order of unity:

dr̃i

dt̃
= F̃vv−interaction

i + F̃pinning
i + F̃thermal

i + F̃drive. (2.34)

Table 2.1 shows some typical values for YBa2Cu3O7−δ materials, and table 2.2 shows the
resulting scaling factors for a simulation using those values. Our choice for the scaling parameters
and the resulting natural length, Lscale, and time, tscale, are in line with other simulations (Ryu
et al., 1996, van Otterlo et al., 1998).

2.7.1 Smallness of time step

The time scale of the simulation is given by tscale. It turns out that for a typical field B = 1T, a
time step of ∆t ≤ 0.005 tscale has to be used to obtain accurate and stable solutions of the system
of differential equations in equation (2.34). This is due to the diverging repulsive vortex-vortex
interaction term. If the step size is too large, then vortices come too close to each other and
will shoot off in the next time step because they feel a large repulsive force. The smallness of
the time step (in real units about 0.5 picoseconds) is, in fact, a common feature of molecular
dynamics simulations of microscopic systems (Allen and Tildesley , 1989, p.155, and Haile, 1997,
p.163). This limits quantitative simulations to time scales ≈ 0.1µs, since about one million time
steps can be computed in reasonable time (for B = 1T).

The main problem in quantitative high-temperature superconductor simulations of the vortex
state is that the critical Lorentz force, Fc, required to depin the system can be very small,
for example in comparison to the force F drive

j0 exerted by the Cooper-pair depairing current
j0 = Φ0/(3

√
3πλ2

abξµ0) ≈ 3 · 1012Am−2 (Brandt , 1995, Sec 1.1). Whereas at low temperatures
for YBCO the ratio Fc/F drive

j0 is of the order of jc/j0 ≈ 0.01 (Higgins and Bhattacharya, 1996),
it becomes much smaller for larger temperatures. At liquid nitrogen temperature the depinning
current density is of the order j = 105Am−2 corresponding to Fc/F drive

j0 ≈ 3 ·10−8. For a driving
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force F drive = 3 · 10 8F drive
j0 the resulting free flow velocity is so small that the vortex system

travels less than one lattice spacing a0 within 0.1µs.
In simulation units the de-pairing drive is2 F̃ drive

j0 ≈ 30. The smallest (transverse) forces
investigated in this work are of the order of 10−4f0 and the largest forces are 8f0 corresponding
to 3 · 10−6F̃ drive

j0 and ≈ 0.25F̃ drive
j0 , respectively.

In computer simulations of the vortex state, Lorentz forces which are significantly larger than
realistic for high temperatures are employed to compensate for the smallness of the time interval
(for example Olson et al., 1998a, van Otterlo et al., 1998). Accordingly, there is a tendency to
choose the strength of the pinning potential to be too big to allow investigation of the depinning
transition.

In other areas of research using molecular dynamics techniques similar problems exist. Two
examples are simulations of protein unfolding, in which unphysically high temperatures are
used to trigger the reaction to happen within the simulation time window (Tirado-Rives and
Jorgensen, 1993), and computations which model the stretching of a dextran molecule due to
an atomic force microscope (AFM), in which the simulated pulling force used is nine orders of
magnitude larger than in the experiment (Rademacher , 1999).

In summary, whereas the low-temperature regime can be simulated with quantitatively rea-
sonable parameters, this is not possible for the dynamics in the high-temperature regime. This
is due to the small time window a computer simulation can cover.

2.8 Limits of model applicability

The described simulation is a model of a set of classical repelling massless point-like particles
under the influence of thermal fluctuations, a driving force, and an underlying potential in
two dimensions. This can be related to the vortex state in high-temperature superconductors in
two-dimensional (thin-films, stack of superconducting layers) and quasi-two-dimensional systems
(rigid vortices) with and without pinning, and at zero and finite temperatures. Using the
substrate model (Fangohr et al., 2002) we can also study a three-dimensional layered system in
the high anisotropy limit of zero Josephson coupling with electromagnetic interlayer interactions.
Our simulation can also be related to the classical two-dimensional one-component plasma (de
Leeuw and Perram, 1982, Caillol et al., 1982, Choquard , 1983) in which electrons experience the
same logarithmic repulsion. In the context of the vortex state we mention two limitations:

• The use of classical particles to represent vortices makes it impossible to include phenomena
such as vortex-anti-vortex pair creations. Of course, the breakdown of superconductivity
at too high a field or too high a temperature cannot be simulated either. Therefore, the
simulation should not be applied to regimes near the upper or lower critical field.

• Quantitative simulations of dynamic systems are restricted by the smallness of the time
scale that can be simulated (subsection 2.7.1). However, the number of computer simula-
tions being subjected to the same or similar restrictions and still providing great insight
into physical concepts encourages the belief that the results are qualitatively correct, even
if driving forces which are artificially large have to be used.

2F̃ drive
j0 = F drive

j0 /f0
(2.12)
= |j0 × Φ0s|/f0 = . . . = 2Lscale/(3

√
3ξ)
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2.9 Observables

2.9.1 Positions and velocities

The governing equation of motion (2.22) automatically provides velocities and positions of all
vortices as a function of time, and we can compute the “centre of mass”-position and velocity
of the system

rcm(t) =
1
N

N∑

i=1

ri(t) and ṙcm(t) =
1
N

N∑

i=1

ṙi(t). (2.35)

Periodic boundary conditions are considered in the computation of the centre of mass, i.e. a
vortex leaving the simulation box to the left and re-entering from the right will not result in a
discontinuity in rcm(t).

2.9.2 Energy

The energy of the system consists of the electromagnetic interaction between vortices (section
1.3.3), and the energy gain from the pinning surface. There is no kinetic energy since the inertial
mass is zero.

2.9.3 Mean square displacement

The running mean square displacement

∆r2(t) =
1
N

N∑

i=1

[ri(t) − ri(t0)]2 (2.36)

can be used to distinguish between a solid and a liquid state of the system. For a solid, ∆r2(t)
remains nearly constant, whereas for a fluid it increases almost linearly with time (Haile, 1997,
p.209).

2.9.4 Structure factor

The structure factor as the Fourier transform of the local density ρ(r) =
N∑

l=1
δ(r − rl) for a set

of N discrete particles reads

S(k) =
∫

dr
N∑

l=1

δ(r − rl) exp(−ik·r) =
N∑

k=l

exp(−ik·rl). (2.37)

This can be evaluated numerically for every required value of k. An alternative approach to
compute S(k) for many k, is to define a coarse grained density function ρ̃(r) based on a two-
dimensional grid with suitable spatial resolution and equidistant grid points and then to use a
discrete two-dimensional fast Fourier transform (Frigo and Johnson, 1998) to obtain S(k). The
latter method is more efficient if we require S(k) for many k.

2.9.5 Delaunay triangulation

The Delaunay triangulation for a set of points in a plane can be defined as in de Berg et al. (1997,
p.188): “A triangulation of a set of points P is the Delaunay triangulation if and only if the
circumcircle of any triangle (going through the three points of the triangle) in the triangulation
does not contain any further points of P in its interior.” The Delaunay triangulation is unique,
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if points are not co-circular, i.e. four particles must not be located on a circle. The Delaunay
triangulation allows easy visualisation of the lattice structure of a set of particles and also
provides further topological data such as the nearest neighbours.

We have used the “Quickhull”-routine in order to obtain Delaunay triangulations of vortex
positions. The source code in C, which has kindly been provided by the Indianapolis Compu-
tation Geometry Centre (Geometry Centre, 1999), has been integrated in the analysis software.
For sets with co-circular points the data is randomly jiggled to resolve this undefined situation.
Details of the very efficient algorithm employed, are found in Barber et al. (1996).

2.9.6 Number of defects

The Delaunay triangulation provides information about nearest neighbours, and by counting
them we find vortices with more or less than six nearest neighbours. These are referred to as
topological defects.

2.9.7 Local hexagonal order

From the Delaunay triangulation the bond angles, θk, of the vortices can be evaluated. Using
these, a parameter Ψ6 that represents the local hexatic order of the system can be computed:

Ψ6 =
1

nbond

∣∣∣∣∣

nbond∑

k=1

exp(i6θk)

∣∣∣∣∣ (2.38)

Here, nbond gives the number of bonds (or equivalently angles) in the Delaunay triangulation
which are considered to be numbered from 1 to nbond. For a perfect hexagonal lattice Ψ6 = 1.

2.9.8 Other observables

A variety of observables can easily be computed in the framework of the substrate model, and
equations are given in citetFangohr02a.

2.10 Simulation software

2.10.1 Programming language

We have developed a suite of programs written in platform independent ANSI C++, comple-
mented with a set of Python3 and Bash4-scripts to assist in data analysis and job submission.

2.10.2 A computation cycle

2.10.2.1 Input data

The user specifies their requirements by writing the configuration of a run (run-ID, number of
vortices, magnetic induction, vortex-interaction, . . . ), in a simple text-file, called a configuration
file. If a pinning potential is required, then the name of a data-file5 containing the potential is
included in the file. Any time-dependent events (such as an increase of the driving force) are
including in this configuration file in the form of an event list.

3Python is on object oriented, interactive, interpreted language. (http://www.python.org)
4Bash is the “Bourne again shell” and available for Linux/Unix and windows operating systems.
5We have a selection of input formats for pinning potentials, for example a two-dimensional table in plain text,

or a bitmap such as a jpeg or png-file.
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It is advantageous to have configuration files stored in plain text as they can easily be created
and modified by scripts, which is useful for parameter space exploration.

2.10.2.2 Pre-processing of input data

The configuration file is processed by the first program of our suite. This checks for correct
syntax and plausibility. If required, further parameters — which usually the user does not need
to care about — are computed (such as coefficients for the smoothing of the interaction close
to the cut-off), and eventually a parameter file, based on the user input configuration file, is
written by the program. This file contains all information that the simulation software needs to
perform the simulation.

There are two reasons for this step: firstly, we check for typos and other mistakes so we
can be reasonably sure that the computation based on this parameter file will not fail for trivial
reasons. Secondly, having all information in a text file means that by simply storing this file (and
the corresponding pinning data), a run can be reproduced. Note also, that no re-compilation is
required at any stage because no configuration details are hard-coded.

2.10.2.3 The computation

At the beginning of the computation the parameter file is read, the pinning potential is loaded,
and tables (for infinite lattice summations, and pinning interpolation) are precomputed. Then
all requested time-steps are computed, and vortex positions are saved to disk regularly.

If requested in the parameter file, the driving force, pinning strength or temperature can
change at specified time steps. No user intervention is required to perform the complete com-
putation which is important when running jobs on computational (non-interactive) clusters.

2.10.2.4 Data analysis

A third program operates on the saved data files and allows to extract the raw stored data as
well as derived observables. We have provided methods to write data to a variety of formats
to be able to use different tools for data analysis. We mainly use OpenDX6 and Xmgrace7 to
visualise static and dynamic data. For high-quality presentations and animations of the pinning
surface, we use PovRay.8

2.10.3 Computational infrastructure

We have used the Beowulf cluster of the University of Southampton with 324 CPUs running at
1GHz and 1.5GHz. Jobs are submitted via a queuing system.

2.11 Summary

A model of the vortex state in high-temperature superconductors has been proposed and im-
plemented efficiently. The model is based on a Langevin dynamics simulation. Vortices are

6OpenDX is an open-source project based on IBM’s Visualization Data Explorer. (http://www.opendx.org)
7Xmgrace is a scriptable WYSIWYG 2D plotting tool, and a descendant of ACE/gr, also known as Xmgr.

(http://plasma-gate.weizmann.ac.il/Grace)
8PovRay is a Raytracing software to create photo-realistic images of 3D-scenes. (http://www.povray.org)
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considered as massless point-like particles that repel each other due to their electromagnetic in-
teractions, and are free to move continuously in a two-dimensional area with (periodic) bound-
ary conditions. Vortices experience an underlying pinning potential representing atomic in-
homogeneities of the sample, and a Lorentz force representing a transport current. The model
describes the physics of a many-body system with competing interactions, and is a good descrip-
tion of a system of pancake vortices (which are not coupled with the other layers) and vortices in
thin film superconductors. Such a system is equivalent to the two-dimensional one-component
plasma (apart from scaling factors). Using the substrate model (Fangohr et al., 2002) we can
also model a three-dimensional layered pancake vortex system in the high anisotropy limit of
zero Josephson coupling.
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Chapter 3

Efficient methods for handling
long-range forces in particle
simulations

3.1 Introduction

Considerable effort has been invested in handling long-range forces for particle-particle sim-
ulations. The conventional cut-off approach truncates the potential in a single unit cell for
separations greater than half the system dimension. In general, it is better to sum the poten-
tial over a number of repeats of the unit cell. Infinite summation methods include the Ewald
summation (Ewald , 1921, de Leeuw et al., 1980, Allen and Tildesley , 1989), multipole methods
(Greengard and Rohklin, 1987), lattice summation methods (Berman and Greengard , 1994), the
Lekner summation method (Lekner , 1989, 1991) and a novel method for logarithmic interac-
tions (Grønbech-Jensen, 1996). In this paper we review some of the problems which can occur
when the potential is näıvely truncated, which have not previously been widely reported in the
literature. We then derive two methods which overcome these problems. The first is suitable for
phenomenological studies of systems and smooths the potential within a single unit cell. The
second is a new real-space summation method appropriate for potentials governed by Bessel
functions. This provides a speed-up factor of at least 20,000 compared to the current method
of summing in a series of shells of increasing radius (Ryu et al., 1996).

In section 3.2 we introduce our model system, which is a simulation of the vortex state in a
superconductor. We discuss the problems which arise with cutting off the interaction potential
in a single unit cell in section 3.3, and give a method of smoothing the potential which overcomes
these problems in section 3.4. We detail the implementation of this method in section 3.5. In
section 3.6 we consider an infinitely tiled periodic system and derive our new summation method.
Section 3.7 describes a simulation of shearing a lattice using our new methods and contrast it
with the results obtained when the potential is cut off. Two ways to speed up computations
using the suggested methods are described in section 3.8, and we draw our conclusions in section
3.9.
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3.2 Model system

We will consider the long-range forces which arise in the simulation of vortices in high-temperature
superconductors (Clem, 1998). The interaction potential for vortex lines is (Tinkham, 1996):

U(r)
c

= K0

( r

λ

)
(3.1)

where λ is the penetration depth of the magnetic field, r is the distance between the particles
and c is a constant. This may be approximated as

U(r)
c

=

{ √
πλ
2r exp

(
− r

λ

)
: r → ∞

ln
(
λ
r

)
+ 0.12 : r ' λ.

(3.2)

Since λ in thin films can be several orders of magnitude larger than r (Ryu et al., 1996), the K0

potential has a very long range (logarithmic) character. It is therefore necessary to either (i) only
consider the interaction inside a single unit cell which contains a large number of particles, or (ii)
sum the interaction over periodic repeats of the unit cell. Our findings are also of relevance to
the simulation of other systems governed by long-range forces such as logarithmically interacting
pancake vortices and the two-dimensional one-component electron plasma (Caillol et al., 1982,
de Leeuw and Perram, 1982) as well as the interaction of electrically charged rods (Grønbech-
Jensen, 1996). We will show results for Monte Carlo simulations, and for molecular dynamics
simulations with a friction term and a random noise term (known as Langevin dynamics, section
2.1). The two-dimensional unit cell geometry can be chosen to be a rectangle, a parallelogram
or a hexagon. In all cases periodic boundary conditions are employed.

3.3 Cut-off potential

The standard approach is to cut off the potential to be constant outside a circle of radius smaller
or equal to min(Lx/2, Ly/2), where Lx and Ly are the lengths of the sides of the unit cell. Since
the force is the gradient of the potential, it is zero outside the cut-off radius. Considering periodic
boundary conditions, we then define the distance between particles, r, to be the minimum image
distance (Allen and Tildesley , 1989).

In figure 3.1 the real force dependence F (r) (solid line) is compared to that for a simula-
tion system with a simple geometrical cut-off (dotted line). For vortices in superconductors,

34



0 1000 2000 3000 4000 5000
!0.8

!0.6

!0.4

!0.2

0

(E
ne

rg
y!

E a)/c

Energy     
Temperature

0 1000 2000 3000 4000 5000
0

0.25

0.5

T/
T m

time steps

Figure 3.2: Left: Langevin dynamics simulation of 90 particles using a cut-off potential, which
start in a hexagonal configuration at 0K (with Abrikosov lattice energy, Ea), are heated to
half their melting temperature (Tm) and then returned to 0K. Temperature is introduced via a
stochastic noise term (2.4). The system finds a new configuration with energy lower than the
energy of the regular lattice. Right: Delaunay triangulation of the final configuration of the
particles at time step 5000. Two cut-off circles are shown to demonstrate that particles align
along these circles.

Abrikosov (1957) demonstrated theoretically that the lowest energy configuration for an infinite
lattice is the hexagonal lattice, or so-called Abrikosov lattice, with an associated Abrikosov lat-
tice energy. However, when using a sharp cut-off in our simulations we find many configurations
with energies lower than the Abrikosov lattice energy.

Figure 3.2 shows the results from a Langevin dynamics simulation of a small number of par-
ticles in which the temperature in the system is cycled from 0K to half the melting temperature
of the vortex solid and is then returned to 0K. The temperature is introduced via a stochastic
noise term (2.4). The Delaunay triangulation of the vortex configuration at the end of the sim-
ulation is elastically deformed and shown on the right in figure 3.2. Detailed examination of the
triangulation shows that the elastic deformations arise due to particles gathering on the bound-
aries of the cut-off circles. In this position they minimise their contribution to the energy in the
system. This gives rise to the “wavy lines” visible in figure 3.2, with a curvature characterised
by the cut-off radius. To demonstrate this, we have shown the cut-off circles corresponding to
two of the particles. The wavy lines are less evident in larger systems, since their curvature is
inversely proportional to the cut-off radius.

If the system is heated above its melting temperature and then annealed slowly, the final
equilibrium state (i) has an energy lower than the Abrikosov energy, and (ii) contains topological
defects. A topological defect is a particle which does not have six nearest neighbours in the
Delaunay triangulation. We have repeated these results for molecular dynamics and Monte Carlo
simulations with up to 2000 particles. The result in figure 3.3 for a Monte Carlo simulation of a
system annealed from a liquid state exhibits low energy and contains defects. We have verified
that our results are independent of the geometry of the unit cell (rectangular, parallelogram, or
hexagonal).
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Figure 3.3: Monte Carlo simulation of 432 particles using a conventional cut-off potential. The
system starts in a regular hexagonal Abrikosov lattice and is heated above its melting point to
approximately 2Tm then annealed slowly to zero temperature in steps of 0.01Tm each step con-
sisting of 5000 Monte Carlo-sweeps. Left: The energy of the system drops below the Abrikosov
lattice energy, Ea. Right: Delaunay triangulation of the final disordered configuration. The
topological defects are circled.

These problems are clearly artificial, and are caused by imposing a sharp cut-off on the very
long range nature of the interaction. It is possible that these finite size effects disappear for
much larger systems, which — depending on the penetration depth, λ — would require systems
with several hundred thousand particles before the effects of this problem began to become
less significant. Methods to deal with such large systems with the Bessel function interaction
potential are currently being developed (Cox et al., 2001), but here we focus on system sizes
≤ 3000 particles which is feasible with today’s technologies.

In studies of high temperature superconductors, interest has recently developed in the for-
mation of topologically ordered states which exhibit quasi-long range translational order: the
so-called Bragg glass. These states occur when the vortices are weakly pinned and have been
investigated both theoretically and experimentally (for example Giamarchi and Le Doussal ,
1995, Kokkaliaris et al., 1999). Other studies have focused on the structural properties of the
dynamics of vortex systems (for example Higgins and Bhattacharya, 1996, Spencer and Jensen,
1997). In both cases it is important that the ground state for an unpinned system should be
a hexagonal lattice without topological defects. Furthermore, for the calculation of numerical
phase diagrams as a function of disordering pinning, it is vital that the disorder is not introduced
by the model itself.

We therefore propose two methods which avoid the problems described above. The first
involves modifying the potential near to the cut-off, and allows qualitative simulation of small
systems using only a single unit cell. The second is a fast summation method which allows
the infinitely tiled periodic system to be considered and enables quantitative simulations to be
performed.
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Figure 3.4: The magnitude of the force field that a particle at position (0,0) experiences from a
system of 418 particles using (left) the sharp cut-off and (right) the smooth cut-off. Smoothing
the potential removes the discontinuities in the force field.

3.4 Smoothed potential

In figure 3.4 (left) we show the force field experienced by a vortex due to its surrounding particles
in a hexagonal configuration. The discontinuities are caused by the artificial step in the force
function shown in figure 3.1 on page 34. It is natural to introduce a smoothed potential, which
reduces the force smoothly to zero over a region from rfade to rcut−off . We impose C1 continuity of
the force at r = rfade and r = rcut−off , i.e. we require the derivative of the force to be continuous
at at r = rfade and r = rcut−off . The smoothed potential is shown in figure 3.1 (dashed line),
with the resulting smooth force field in figure 3.4 (right). The smoothing distance rcut−off −rfade

is a free parameter which should be kept as small as possible to maintain the original force over
the largest possible range. Numerical experiments show that three lattices spacings is sufficient.
Figure 3.5 shows the results of a Monte Carlo simulation using a similarly smoothed energy.
Simulations using this modified potential do not find configurations below the Abrikosov energy
and topological defects only occur when the system is annealed very rapidly.

The interpretation is that due to the slow force change at the cut-off (enforced by the
derivative being zero) a particle pair separated by a distance of ≈ rcut−off experiences continuous
and small changes in force if the relative displacement of the particles is perturbed. This is in
contrast to the large discontinuous fluctuations that occur when the sharp cut-off is being used,
which can enable the system to discover configurations with energies less than the Abrikosov
energy. We have also used interpolating polynomials of higher order and an exponential function
in the smoothing region: in all cases the system does not discover energy states below the
Abrikosov energy.

It is important to consider whether the modification of the original force with the smooth
cut-off affects the system’s behaviour. Applying a cut-off to the long-range interaction is a
major change of the long-range interaction. However, introducing the smoothing distance and
altering the force in the region between rfade and rcut−off cannot be worse than using a slightly
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Figure 3.5: Monte Carlo simulation of 432 particles using a potential smoothed over three lattice
spacings. Left: The energy of the system never drops below the Abrikosov lattice energy, Ea.
Right: Delaunay triangulation of the final configuration shows the system has a hexagonal
ground state.

smaller system with r′cut−off = rfade. The enormous advantage of using a smooth cut-off is
that the structural properties of the system can be simulated correctly and that the lowest
energy configuration is identical to the known ground state. For studies of the dynamics of
vortices, recent results show that the precise details of the long-range particle interaction are
not crucial (Zhu et al., 1999), and this is in agreement with our results (see figure 8 in Fangohr
et al. (2002)) which show no differences between using an infinite lattice summation and using
a smooth cut-off. We therefore recommend using the smoothed potential instead of the sharp
cut-off.

3.5 Implementation of smooth cut-off

We now describe how to implement a smooth cut-off using a third order polynomial for the force
F (r) r

|r| = −∇U(r), and a fourth order polynomial for the energy U(r).
For short-ranged interactions it is sufficient to use an interaction F̂ (r) which is equal to F (r)

for r ≤ b and zero otherwise:

F̂ (r) =

{
F (r) : r ≤ b

0 : r > b.
(3.3)

However, to avoid the artificial configurations described above we reduce the long-range force
F (r) smoothly to zero near the cut-off distance b as shown in figure 3.6 on the next page. One
needs to introduce another distance, a, and a polynomial p(r), such that a < b and that p(r)
interpolates between F (a) at a and and zero at b:

F̂ (r) =






F (r) : r ≤ a

p(r) : a < r ≤ b

0 : r > b.

(3.4)
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Figure 3.6: Demonstrating the shape of the interpolating polynomial p(r) (thick line) which
smoothly reduces the vortex-vortex interaction force F (r) to zero. For clarity we have chosen
F (r) = 1/r. The interpolation starts at the fading distance a = 7.5a0 and reduces the interaction
force to zero at the cut-off distance b = 10.5a0, where a0 is the average vortex lattice spacing.

It is required that F̂ (r) has C1 continuity at a and b, and its gradient at b is zero:

F (a) = p(a), (3.5)

p(b) = 0, (3.6)
dF

dr

∣∣∣∣
r=a

=
dp

dr

∣∣∣∣
r=a

, (3.7)

dp

dr

∣∣∣∣
r=b

= 0. (3.8)

We have used a third order polynomial

p(r) =
3∑

i=0

cir
i = c3r

3 + c2r
2 + c1r + c0 (3.9)

and the coefficients ci are completely determined by equations (3.5) to (3.8). Writing F ′(r) for
dF
dr (r) one finds





c3

c2

c1

c0



 =
1

(a − b)3





F ′(a)a − F ′(a)b − 2F (a)

−F ′(a)a2 + 3F (a)(a + b) − aF ′(a)b + 2F ′(a)b2

(
2F ′(a)a2 − aF ′(a)b − 6F (a)a − F ′(a)b2

)
b

−F ′(a)b2a2 + 3F (a)ab2 + F ′(a)ab3 − b3F (a)




. (3.10)

The cut-off distance, b, is determined by geometrical constraints, i.e. half the system size, or by
the computational resources available. We choose the distance b − a over which the interaction
is reduced to zero to be three lattice spacings, so that a = b−3a0. Figure 3.6 shows a schematic
plot of the smooth cut-off and the interpolating polynomial.

To compute the similarly smoothed potential energy of the system, it is required to integrate
−p(x) to represent the smoothed interaction potential for a < r < b. The integration constant
is determined by requiring continuity of the interaction potential at r = a.

3.6 Fast infinite summation

An alternative approach to modifying the potential is to sum the potential function over periodic
repeats of the unit cell, which provides the best representation of the system given only a finite
number of particles. We write the potential (3.1) in the form (Ryu et al., 1996):
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Figure 3.7: Fractional error (E∞ −En)/E∞ and time taken to compute the energy En between
two particles separated by a single lattice spacing in an infinitely tiled periodic system when n
image cells are used. Here, E∞ is estimated by allowing the summation to converge to machine
accuracy.

U(|r|)
c

= K∗
0

(
|r|
λ

)
=

∑

mx,my

K0

(
|r| + Lxmxx̂ + Lymyŷ

λ

)
, (3.11)

where mx and my are integers and Lx and Ly are the lengths of the edges of the simulation cell.
This is truncated such that m2

x + m2
y ≤ N2

m; we sum the potential in shells of increasing radius,
Nm, until it has converged.

In order to be able to compare our findings with the results of Ryu et al. (1996), we follow
their choice of parameter values. We use a value for the penetration depth, λ, at 0K of 7700Å
for Mo77Ge23. We will return to the temperature dependence of λ later. In figure 3.7, we show
the exponentially fast convergence of the energy between two particles in a simulation of 300
vortices in the Abrikosov lattice state, as more image cells are included. We also show the
time taken to perform this calculation on a 450 MHz Pentium II using Compaq (Digital) Visual
Fortran under Windows NT 4.0. For the particle-particle energy to converge to a relative error
better than 1 × 10−8 requires Nm ∼ 300, which takes approximately πN2

m ≈ 300, 000 calls to
the K0 function. This ensures that the total system energy is accurate to better than 0.01%.

We now derive a new method to perform this infinite summation. In figure 3.8 we have:

Z2 = (mxLx)2 + (myLy)2

z2 = (xi − xj)2 + (yi − yj)2

θ = tan−1

(
xi − xj

yi − yj

)
+
π

2

ϕ = tan−1

(
myLy

mxLx

)
. (3.12)
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between i and the mirror image of j.

We define
φ = θ + ϕ

which yields

w2 = Z2 + z2 − 2zZ cos(φ). (3.13)

We may use the Gegenbauer addition formulae (Watson, 1944) to write

K0

(w

λ

)
=

∞∑

k=−∞
Kk

(
Z

λ

)
Ik

( z

λ

)
cos(kφ) (3.14)

for the energy between a particle i and one of the periodic images of j, where Ik and Kk are
modified Bessel functions. This formula requires z ≤ Z, which is automatically satisfied since z

is the minimum image distance between i and j. We can therefore write the total energy (3.11)
of two particles i and j summed over all periodic images in the form:

K∗
0

(
|r|
λ

)
= K∗

0

(w

λ

)
= K0

( z

λ

)
+

∑

mx,my
not mx=my=0

∞∑

k=∞
Kk

(
Z

λ

)
Ik

( z

λ

)
cos(kφ), (3.15)

where the case mx = my = 0, for which z -< Z, is the contribution to the energy from the unit
cell which must be explicitly included as a separate term. Further re-arrangement and use of
(3.13) gives

K∗
0

(w

λ

)
= K0

( z

λ

)
+

∞∑

k=−∞
Ik

( z

λ

)
[ck cos(kθ) − sk sin(kθ)] (3.16)

where

ck =
∑

mx,my
not mx=my=0

Kk

(
Z

λ

)
cos(kϕ)

sk =
∑

mx,my
not mx=my=0

Kk

(
Z

λ

)
sin(kϕ). (3.17)
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Equations (3.16) and (3.17) have the remarkable property that the coefficients correspond-
ing to the infinite summation over the periodic repeats of the unit cell can be pre-computed.
This reduces the double summation in (3.11) to a single summation. Furthermore, due to
the exponential convergence of the Gegenbauer addition formulae, the sum may be truncated
at ktrunc ∼ 5 − 20 terms. A further factor of two in performance can be obtained by using
symmetry to convert the summation from k = −∞ . . .∞ to the range k = 0 . . .∞.

The form (3.16) closely resembles a Fourier type summation method, yet the whole calcu-
lation proceeds in real space in contrast to the Ewald summation method (Olive and Brandt ,
1998).

The convergence of the energy between two particles in the Abrikosov lattice is identical to
the convergence shown in figure 3.7 as we add more terms to the calculation of the coefficients ck

and sk. We have chosen the case of two nearest neighbours, which yields the slowest convergence
of (3.16) since z takes its smallest value.

In a superconductor, λ is a function of the temperature. For our model system (Mo77Ge23)
λ(T ) = λ(0)/(1 − T/Tc)1/2 (Ryu et al., 1996), where Tc = 5.63K is the critical temperature at
which the material loses its superconducting properties. Hence the coefficients ck and sk need to
be re-computed at each temperature. As the temperature increases additional image cells need
to be included in both (3.11) and the pre-computation (3.17). The crucial difference, however,
between (3.11) and (3.16) is that the time taken to evaluate the energy using (3.16) remains
virtually constant once the coefficients are available, whereas the na”ıve summation requires
considerable numbers of additional image cells to converge to the solution. In figure 3.9 we
show the speedup of our method when computing the energy between two particles at a fixed
accuracy of 1 × 10−5 (relative to the energy computed to machine accuracy by either method).
In all cases the resulting energies are shown to be identical to the stated accuracy. At 0K and
using 5 terms in the truncation of (3.16), we have a speedup of 20,000 over the näıve summation
method. This rises to 400,000 for temperatures approaching Tc. If the particle energy is required
to be accurate to 1 × 10−8, then, using 30 coefficients, the speedups are between 50,000 (T =
0K) and 1,000,000 (T ≈ Tc).

Since the coefficients ck and sk depend on λ (and hence temperature); the method may
appear to be costly if the temperature is changed at every Langevin dynamics or Monte Carlo
step. We now discuss several ways to overcome this. Firstly, it is possible to perform Monte
Carlo simulations at a small number of temperatures and use the data from these to obtain
information about the behaviour of the system as a continuous function of temperature (Ferren-
berg and Swendsen, 1988, 1989). Thus improving the sophistication of the analysis of the results
can reduce the number coefficients ck and sk which need to be pre-calculated. Secondly it is
possible to compute the ck and sk at a small set of temperatures and use interpolation to derive
their values at other temperatures. Finally, since only ∼ 5 − 20 coefficients are needed, it is
straightforward to compute once and store on disk the values of ck and sk for each temperature
to be explored. These values will be re-used a large number of times in a typical set of numerical
simulations.

We implement (3.16) using a recurrence relation (Press et al., 1992) for the trigonometric
terms and a vendor-optimised vector Bessel function. Goertzel’s algorithm (Goertzel , 1958)
could be employed for additional efficiency, though the improvement is likely to be marginal. The
remarkable speedup obtained is due to the fixed work equivalent to roughly five calls to a Bessel
function routine required for (3.16), compared to ∼ 100, 000 calls required for (3.11) (at 0K).
The five calls are: two to initialise the Bessel recurrence, one to evaluate the contribution from
the unit cell, and the equivalent of roughly a further two for the remaining trigonometric terms.
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Figure 3.9: Speedup of fast infinite summation method over näıve implementation when the
relative error in the energy between each pair of particles is fixed to be 1× 10−5: both methods
yield identical results.

Our infinite summation is correspondingly five times slower than using the smoothed potential
in a single unit cell, which requires evaluation of a single Bessel function or a polynomial. This is
confirmed by experiments. For simulations using the fast infinite lattice summation, results are
similar to those of figure 3.5. The infinite lattice summation method is suitable for quantitative
studies of superconductors.

3.7 Results

In the previous sections we have demonstrated that the phenomenological potential and the in-
finitely summed potential ensure that the Abrikosov lattice is the minimum energy configuration
for our system. We now show that the incorrect handling of the long-range potential seriously
affects the elastic properties of a lattice.

We have considered a simulation of shearing of a hexagonal lattice, which is a simplified
version of the simulations required to perform current-voltage characterisations. Inset (a) in
figure 3.10 shows a Delaunay triangulation for half the simulation cell demonstrating the experi-
mental set-up: a shearing force is applied to the central row of particles marked by black points,
and the particles marked by open circles are not allowed to move in the x-direction. The main
diagram shows the resulting change in energy as a response to the shearing force. The upper
part of the figure shows data for the smooth cut-off, and the lower part shows the results for
the sharp cut-off. The smooth cut-off and the infinite lattice summation produce the expected
behaviour: with increasing shear stress the energy increases. The slope of the energy-change as
a function of the displacement characterises the shear elastic modulus of the crystal. Inset (b1)
shows a triangulation of a system which has been slightly tilted by the applied force. In con-
trast, employing the sharp cut-off, the energy decreases for applied shear stress, i.e. the material
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Figure 3.10: Change in energy, ∆E, (in simulation units) as a function of a shearing force, fshear,
(in simulation units) for the smooth and the sharp cut-off. For the infinite lattice summation
we obtain qualitatively similar results. Insets (a), (b1) and (b2) show different snap shots of
vortex configurations. Insets (c1) and (c2) show the local hexagonal order, Ψ6, as the experiment
progresses (see text for details).

appears to collapse after applying a shearing force! We show the triangulation of the particle
configuration after shearing in inset b2.

Insets (c1) and (c2) show the time evolution of the local hexatic order (section 2.9.7),

Ψ6 =
1

nbond

∣∣∣∣∣
∑

k

exp(i6θk)

∣∣∣∣∣ , (3.18)

where the sum runs over all bond angles θk in the Delaunay triangulation. Every 50,000 time
steps the system starts as a hexagonal lattice (Ψ6 = 1) and a new shearing force is applied for
the next 50,000 time steps.

In (c1), which shows results computed using the smoothed potential, Ψ6 decreases continu-
ously until a static state is reached, reflecting the shearing of the system. The energy data in the
main plot are taken from these static states. In (c2) (sharp cut-off) Ψ6 drops suddenly to a much
smaller value, representing the sudden change to configurations similar to those shown in (b2).
Thus, using a sharp cut-off, the mechanical properties of the lattice are severely affected by the
incorrect handling of the long-range potential: this would seriously affect numerical simulations
aimed at studying elastic properties of the vortex state in superconductors. The smooth cut-off

44



Figure 3.11: Infinite lattice interac-
tion potential U(r) as a function of
particle-pair displacement vector r ∈
S within the simulation cell S. For
r → 0 the particles approach each
other and feel a strong repulsive force,
which is reflected in the divergence in
the centre (at r = 0). Note that the
isolines are not equally spaced, which
reveals the periodicity of the system
close to the corners.

and the infinite lattice summation produce the correct physical behaviour and can be used in
more complex numerical simulations for phenomenological (smoothed potential) or quantitative
(infinite summation) studies of the vortex state.

In comparative studies, we have found that it makes no difference whether the infinite lattice
summation or the smooth cut-off is used for our simulations (for example, figure 8 in Fangohr
et al. (2002) shows the agreement of data computed with either method).

3.8 Efficiency improvements

We describe how to further speed up particle simulations when using an infinite lattice summa-
tion (section 3.8.1) and a cut-off (section 3.8.2).

3.8.1 Look-up table for infinite lattice summation

For every interacting particle-pair (ri, rj) with i -= j, the infinite lattice summation can be
seen as computing the interaction between two lattices that are displaced relative to each other
by the displacement vector r = ri − rj , where the unit cell for the displaced lattices is the
simulation cell. The displacement vector r will always be located within the simulation cell
S = [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ⊂ IR2.

We can use this property, and pre-compute a look-up table for (3.16) for all r ∈ S. We know
that the interaction potential U(r) diverges1 at r = 0, but varies slowly and smoothly for all
other r ∈ S. Due to the strong repulsion, particles will not come close to each other so that it
is not necessary to pay special attention to the divergence.

1We do not take into account here the attraction that real vortices experience when their cores start to overlap.
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Figure 3.12: Left: For the neighbour look-up, we keep for each particle a list containing all other
particles inside the cut-off circle and inside the skin-layer (shaded in gray). Middle: Performance
results for a cut-off at 6.5a0, where a0 is the average particle spacing. The thickness of the skin-
layer has been varied from 0 to 6.5a0. Each line is for another number of particles, as indicated
in the legend. Right: Speed-up relative to using no neighbour list. The optimum skin thickness
varies with the system size, and shifts from ≈ 0.4a0 for 504 particles to ≈ 1.5a0 for 5016 particles.

Figure 3.11 shows the infinite lattice interaction potential U(r) with r ∈ S for a logarithmic
particle interaction as described by Grønbech-Jensen (1996), which shows qualitatively the same
features as the infinite-lattice interaction potential for K0, only with the central divergence
decaying slower with increasing r. The figure demonstrates the regularity of this function for
r -= 0.

Such a smooth function (apart from r = 0) can easily be interpolated by a two-dimensional
look-up table using bi-linear or bi-cubic interpolation for intermediate positions. In the beginning
of a simulation, we have a small overhead to compute the look-up table which can be done within
a couple of minutes (for 600 particles, 2000 table-entries per area occupied by one particle, on
a 700 MHz PIII). However, subsequently we profit strongly from the look-up table: it is (i)
about as fast as the smooth cut-off, and (ii) we can pre-compute the table with a high accuracy
without slowing down the subsequent main computation.

3.8.2 Neighbour list for smooth cut-off

Having confirmed that using a (smooth) cut-off is an appropriate method to study a system, one
can consider to cut off the interaction not at the largest possible value (i.e. half the simulation
cell size), but for example at a distance of 10 lattice spacings. It is advisable to perform finite
size scaling to ensure that this does indeed not affect the system. Having done so, we can keep
a neighbour list for every particle which keeps all particles within the cut-off range and particles
just outside the cutoff range. This method is known as a Neighbour-list or Verlet-list (Verlet ,
1967).

The left plot in figure 3.12 demonstrates the concept of the skin layer. In the very first time-
step, we create the neighbour lists. Subsequently, in every time step n, we find the maximum
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displacement ∆rn

∆rn = max
i

|ṙn
i ∆t| (3.19)

where ṙn
i is the velocity of particle i in time-step n. We recompute the neighbour list when

∑

n

∆rn ≥ dskin (3.20)

where dskin is the thickness of the skin-layer. To compute the interaction of a particle with all
others, we now only consider particles within the cut-off circle and within the skin-layer, and
these can be looked up quickly from the neighbour list.

Apart from the re-computation of the neighbour list, the time complexity scales linear with
the number of particles for a given cut-off and a fixed thin thickness. The performance data
shown in figure 3.12 help us to chose the optimum skin-thickness: if the skin-layer is too thick,
then many unnecessary interaction computations are attempted with the particles in the skin-
layer. On the other hand, if the skin-layer is too thin, then the neighbour list needs to be updated
very frequently, which is quite expensive. The data show that even for small systems there is
a performance gain using the neighbour look-up, and for large systems it can be substantial.
Even if the cut-off is chosen to be half the system size, there is still a performance increase by
using a thin skin-layer in comparison to not using a neighbour list.

3.9 Conclusions

For particle-particle simulations using long-range interactions subject to periodic boundary con-
ditions, a sharp cut-off for the interaction energy (or force) can yield misleading results. We
have considered the case of superconductors, in which the potential is governed by a Bessel func-
tion. Monte Carlo and molecular dynamics simulations are often used to study phase diagrams
numerically and it is vital that the phase behaviour of the system is not affected by the model
itself. We find that using a sharp cut-off the system can find irregular lattice configurations
with an energy below the theoretical ground state of a regular hexagonal lattice. Therefore, the
(dynamical) phase diagram of the system under investigation can be dramatically affected by
incorrect handling of the long-range potential.

We have presented two methods which overcome these problems. The first is suitable for
phenomenological studies of systems and uses a smoothed potential, but still truncates the
interaction over a single unit cell. Annealing a system governed by this modified potential yields
a perfect hexagonal lattice which is the global energy minimum. This is the least computationally
expensive option and is applicable to any potential. The second method sums the interaction
over the infinitely tiled unit cell and is suitable for quantitative system studies. Previous methods
for performing this, add the tiled images in a series of shells of increasing radius. We have shown
that with the pre-computation of a set of Fourier type coefficients, the whole infinite summation
can be computed using a summation which converges exponentially fast and results in a speed-
up of between 20,000 and 1,000,000 over the näıve summation, depending on the range of the
interaction and the desired accuracy. The derivation of the summation proceeds in real space,
and the results converge exactly to those obtained from other summation methods. This is
roughly five times as slow as using the smoothed potential, but is the most accurate method
for systems of finite size. Both methods can be made faster by using looking look-up tables for
the interaction (infinite lattice summation) and for neighbours (smooth cut-off). The suggested
methods have been used in Fangohr et al. (2001b,a, 2002) and in a number of other works (Price
et al., 2000, Molinari et al., 2001, Fruchter , 2002b,a, Grigorenko et al., 2002).
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To do

• combine this document with the userguide for vdsim
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